45 research outputs found

    Digital Leadership ‒ Mountain or Molehill? A Literature Review

    Get PDF

    Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease

    Get PDF
    The scurfy mutant mouse strain suffers from a fatal lymphoproliferative disease leading to early death within 3–4 wk of age. A frame-shift mutation of the forkhead box transcription factor Foxp3 has been identified as the molecular cause of this multiorgan autoimmune disease. Foxp3 is a central control element in the development and function of regulatory T cells (T reg cells), which are necessary for the maintenance of self-tolerance. However, it is unclear whether dysfunction or a lack of T reg cells is etiologically involved in scurfy pathogenesis and its human correlate, the IPEX syndrome. We describe the generation of bacterial artificial chromosome–transgenic mice termed “depletion of regulatory T cell” (DEREG) mice expressing a diphtheria toxin (DT) receptor–enhanced green fluorescent protein fusion protein under the control of the foxp3 gene locus, allowing selective and efficient depletion of Foxp3+ T reg cells by DT injection. Ablation of Foxp3+ T reg cells in newborn DEREG mice led to the development of scurfy-like symptoms with splenomegaly, lymphadenopathy, insulitis, and severe skin inflammation. Thus, these data provide experimental evidence that the absence of Foxp3+ T reg cells is indeed sufficient to induce a scurfy-like phenotype. Furthermore, DEREG mice will allow a more precise definition of the function of Foxp3+ T reg cells in immune reactions in vivo

    IL-22 Is Produced by Innate Lymphoid Cells and Limits Inflammation in Allergic Airway Disease

    Get PDF
    Interleukin (IL)-22 is an effector cytokine, which acts primarily on epithelial cells in the skin, gut, liver and lung. Both pro- and anti-inflammatory properties have been reported for IL-22 depending on the tissue and disease model. In a murine model of allergic airway inflammation, we found that IL-22 is predominantly produced by innate lymphoid cells in the inflamed lungs, rather than TH cells. To determine the impact of IL-22 on airway inflammation, we used allergen-sensitized IL-22-deficient mice and found that they suffer from significantly higher airway hyperreactivity upon airway challenge. IL-22-deficiency led to increased eosinophil infiltration lymphocyte invasion and production of CCL17 (TARC), IL-5 and IL-13 in the lung. Mice treated with IL-22 before antigen challenge displayed reduced expression of CCL17 and IL-13 and significant amelioration of airway constriction and inflammation. We conclude that innate IL-22 limits airway inflammation, tissue damage and clinical decline in allergic lung disease

    Rank signaling links the development of invariant γΎ T cell progenitors and Aire(+) medullary epithelium

    Get PDF
    The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αÎČ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant VÎł5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of VÎł5(+) γΎ T cells during thymus medulla formation for αÎČ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation

    Applying non-canonical amino acids for investigation of vibrational energy transfer and dynamic allostery in a synaptic protein domain

    No full text
    Proteine sind die Maschinen der Zellen. Um die FunktionalitĂ€t von zahlreichen zellulĂ€ren Prozessen zu gewĂ€hrleisten, mĂŒssen Kommunikationssignale innerhalb von Proteinen weitergeleitet werden. Die Weiterleitung einer Störung an einem Ort im Protein zu einer entfernten Stelle, an welcher sie strukturelle und/oder dynamische Änderungen auslöst, wird Allosterie genannt. ZunĂ€chst wurde Allosterie hauptsĂ€chlich mit großrĂ€umigen KonformationsĂ€nderungen in Verbindung gebracht, aber spĂ€ter entwickelte sich ein dynamischerer Blickwinkel auf Allosterie in Abwesenheit dieser großrĂ€umigen KonformationsĂ€nderungen. Die Idee eines allosterischen Pfades bestehend aus konservierten und energetisch gekoppelten AminosĂ€uren, welche die Signalweiterleitung zwischen entfernten Stellen im Protein vermitteln, entstand. Diese allosterischen Pfade wurden durch zahlreiche theoretische Studien in Zusammenhang mit Pfaden effizienten anisotropen Energieflusses gebracht. Der Energiefluss entlang dieser Netzwerke verknĂŒpft allosterische SignalĂŒbertragung mit Schwingungsenergietransfer (VET - vibrational energy transfer). Die Großzahl der Forschungsarbeiten ĂŒber dynamische Allosterie basiert auf theoretischen Methoden, weil nur wenige geeignete experimentelle Verfahren existieren. Um diesen essentiellen biologischen Prozess der InformationsĂŒbertragung besser verstehen zu können, ist die Entwicklung neuer und leistungsstarker experimenteller Instrumente und Techniken daher dringend erforderlich. Die vorliegende Dissertation setzt sich dies zum Ziel. VET in Proteinen ist aufgrund der Proteingeometrie inhĂ€rent anisotrop. Alle globulĂ€ren Proteine besitzen KanĂ€le effizienten Energieflusses, von denen vermutet wird, dass sie wichtig fĂŒr Proteinfunktionen, wie die schnelle Ableitung von ĂŒberschĂŒssiger WĂ€rme, Ligandenbindung und allosterische Signalweiterleitung, sind. VET kann mit zeitaufgelöster Infrarot (IR) Spektroskopie untersucht werden, bei welcher ein Femtosekunden Anregepuls eines Lasers Schwingungsenergie in ein molekulares System an einer bestimmten Stelle injiziert und ein, nach einem verĂ€nderbarem Zeitintervall folgender, IR Abfragepuls die Ausbreitung dieser Schwingungsenergie detektiert. Ein protein-kompatibler und universell einsetzbarer Chromophor, der die Energie eines sichtbaren Photons in Schwingungsenergie konvertiert, wird als Heizelement benötigt um langreichweitige VET Pfade in Proteinen kartieren zu können. Der Azulen (Azu) Chromophor eignet sich dafĂŒr, weil er nach Photoanregung des ersten elektronischen Zustandes durch ultraschnelle interne Konversion fast die gesamte injizierte Energie innerhalb von einer Picosekunde in Schwingungsenergie umwandelt. Eingebettet in die nicht-kanonische AminosĂ€ure (ncAA - non-canonical amino acid) ß-(1-Azulenyl)-L-Alanine (AzAla), kann der Azu Rest in Proteine eingebaut werden. Die Ankunft der injizierten Schwingungsenergie an einer bestimmten Stelle im Protein kann mithilfe eines IR Sensors detektiert werden. Die Kombination aus Azu als VET Heizelement und Azidohomoalanine (Aha) als VET Sensor mit transienter IR (TRIR) Spektroskopie wurde schon erfolgreich an kleinen Peptiden in der Dissertation von H. M. MĂŒller-Werkmeister getestet, die der vorliegenden Dissertation in den Laboren der Bredenbeck Gruppe vorausging. Die Schwingungsfrequenz chemischer Bindungen ist hochempfindlich auf selbst kleine Änderungen der Konformation und Dynamik in der unmittelbaren Umgebung und kann mit IR Spektroskopie gemessen werden, z. B. mit Fourier Transform IR (FTIR) Spektroskopie. IR Spektroskopie bietet eine außergewöhnlich gute Zeitauflösung, die es ermöglicht, dynamische Prozesse in MolekĂŒlen auf einer Zeitskala von wenigen Picosekunden zu beobachten, wie z. B. die ultraschnelle Weiterleitung von Schwingungsenergie. Mit zweidimensionaler (2D)-IR Spektroskopie können die Relaxation von schwingungsangeregten ZustĂ€nden und strukturelle Fluktuationen um die schwingende Bindung untersucht werden. Allerdings geht die herausragende Zeitauflösung mit limitierter spektraler Auflösung einher. In grĂ¶ĂŸeren MolekĂŒlen mit zahlreichen Bindungen ĂŒberlagern sich die Schwingungsbanden und die Ortsauflösung geht verloren. Um diese Limitierung zu ĂŒberwinden, können IR Marker benutzt werden, chemische Gruppen, die in einer spektral durchsichtigen Region des Protein/Wasser Spektrums (1800 bis 2500 cm-1) absorbieren. Als ncAA können sie kotranslational in Proteine an einer gewĂŒnschten Stelle eingebaut werden und so ortsspezifische Informationen aus dem Proteininneren liefern. Aufgrund ihrer geringen GrĂ¶ĂŸe, eines relativ großen Extinktionskoeffizientens (350-400 M-1cm-1) und einer hohen Empfindlichkeit auf Änderungen in der lokalen Umgebung sind organische Azide (N3) wie zum Beispiel Aha besonders geeignete IR Marker. Aha kann als Methionin Analogon ins Protein eingebaut werden. ..

    A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions

    Get PDF
    Background Studying bacterial adhesion and early biofilm development is crucial for understanding the physiology of sessile bacteria and forms the basis for the development of novel antimicrobial biomaterials. Microfluidics technologies can be applied in such studies since they permit dynamic real-time analysis and a more precise control of relevant parameters compared to traditional static and flow chamber assays. In this work, we aimed to establish a microfluidic platform that permits real-time observation of bacterial adhesion and biofilm formation under precisely controlled homogeneous laminar flow conditions. Results Using Escherichia coli as the model bacterial strain, a microfluidic platform was developed to overcome several limitations of conventional microfluidics such as the lack of spatial control over bacterial colonization and allow label-free observation of bacterial proliferation at single-cell resolution. This platform was applied to demonstrate the influence of culture media on bacterial colonization and the consequent eradication of sessile bacteria by antibiotic. As expected, the nutrient-poor medium (modified M9 minimal medium) was found to promote bacterial adhesion and to enable a higher adhesion rate compared to the nutrient-rich medium (tryptic soy broth rich medium ). However, in rich medium the adhered cells colonized the glass surface faster than those in poor medium under otherwise identical conditions. For the first time, this effect was demonstrated to be caused by a higher retention of newly generated bacteria in the rich medium, rather than faster growth especially during the initial adhesion phase. These results also indicate that higher adhesion rate does not necessarily lead to faster biofilm formation. Antibiotic treatment of sessile bacteria with colistin was further monitored by fluorescence microscopy at single-cell resolution, allowing in situ analysis of killing efficacy of antimicrobials. Conclusion The platform established here represents a powerful and versatile tool for studying environmental effects such as medium composition on bacterial adhesion and biofilm formation. Our microfluidic setup shows great potential for the in vitro assessment of new antimicrobials and antifouling agents under flow conditions

    Identification of AHL- and BDSF-Controlled Proteins in Burkholderia cenocepacia by Proteomics

    Full text link
    We used comparative proteome analysis to determine the target genes of the two quorum sensing (QS) circuits in the opportunistic pathogen Burkholderia cenocepacia: the N-acyl homoserine lactone (AHL)-based CepIR system and the BDSF (B urkholderia diffusible signal factor, cis-2-dodecenoic acid)-based RpfFR system. In this book chapter, we focus on the description of the practical procedure we currently use in the laboratory to perform a sensitive GeLC-MS/MS shotgun proteomics experiment; we also briefly describe the downstream bioinformatic data analysis

    Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix

    Full text link
    Biofilms are surface-associated bacteria that are embedded in a matrix of self-produced polymeric substances (EPSs). The EPS is composed of nucleic acids, polysaccharides, lipids, and proteins. While polysaccharide components have been well studied, the protein content of the matrix is largely unknown. Here we conducted a comprehensive proteomic study to identify proteins associated with the biofilm matrix of Pseudomonas aeruginosa PAO1 (the matrix proteome). This analysis revealed that approximately 30% of the identified matrix proteins were outer membrane proteins, which are also typically found in outer membrane vesicles (OMVs). Electron microscopic inspection confirmed the presence of large amounts of OMVs within the biofilm matrix, supporting previous notions that OMVs are abundant constituents of P. aeruginosa biofilms. Our results demonstrate that while some proteins associated with the P. aeruginosa matrix are derived from secreted proteins and lysed cells, the large majority of the matrix proteins originate from OMVs. Furthermore, we demonstrate that the protein content of planktonic and biofilm OMVs is surprisingly different and may reflect the different physiological states of planktonic and sessile cells
    corecore