8 research outputs found

    Low alpha power (7.5–9.5 Hz) changes during positive and negative affective learning

    Get PDF
    There is evidence that the positive and the negative word lists of the Affective Auditory Verbal Learning Test (AAVL) are useful with regard to mood induction. To date, however, changes in brain activation, as indicated by quantitative electroencephalographic recording, have not been examined. Thus, changes in low alpha power (7.5–9.5 Hz) were examined during and after completion of the positive or the negative learning list of the AAVL among 37 undergraduate men and women. Three primary findings from the study include the following: (1) Previously reported recall patterns were replicated; (2) participants who completed the negative list reported a significant decline in mood state at the end of the session; and (3) participants who completed the negative word list evidenced a significant reduction in low alpha power (in comparison with baseline) within the parietal regions. The findings noted above are seemingly counter to contemporary theories of mood regulation (i.e., asymmetrical changes in anterior activity, rather than changes in parietal regions). Although the AAVL may have limited utility as a tool for mood induction, it may serve as a functional tool for examination of the cerebral processes associated with affective verbal memory

    Low alpha power (7.5–9.5 Hz) changes during positive and negative affective learning

    No full text
    There is evidence that the positive and the negative word lists of the Affective Auditory Verbal Learning Test (AAVL) are useful with regard to mood induction. To date, however, changes in brain activation, as indicated by quantitative electroencephalographic recording, have not been examined. Thus, changes in low alpha power (7.5–9.5 Hz) were examined during and after completion of the positive or the negative learning list of the AAVL among 37 undergraduate men and women. Three primary findings from the study include the following: (1) Previously reported recall patterns were replicated\; (2) participants who completed the negative list reported a significant decline in mood state at the end of the session\; and (3) participants who completed the negative word list evidenced a significant reduction in low alpha power (in comparison with baseline) within the parietal regions. The findings noted above are seemingly counter to contemporary theories of mood regulation (i.e., asymmetrical changes in anterior activity, rather than changes in parietal regions). Although the AAVL may have limited utility as a tool for mood induction, it may serve as a functional tool for examination of the cerebral processes associated with affective verbal memory

    Low alpha power (7.5--9.5 Hz) changes during positive and negative affective learning

    No full text
    There is evidence that the positive and the negative word lists of the Affective Auditory Verbal Learning Test (AAVL) are useful with regard to mood induction. To date, however, changes in brain activation, as indicated by quantitative electroencephalographic recording, have not been examined. Thus, changes in low alpha power (7.5--9.5 Hz) were examined during and after completion of the positive or the negative learning list of the AAVL among 37 undergraduate men and women. Three primary findings from the study include the following: (1) Previously reported recall patterns were replicated; (2) participants who completed the negative list reported a significant decline in mood state at the end of the session; and (3) participants who completed the negative word list evidenced a significant reduction in low alpha power (in comparison with baseline) within the parietal regions. The findings noted above are seemingly counter to contemporary theories of mood regulation (i.e., asymmetrical changes in anterior activity, rather than changes in parietal regions). Although the AAVL may have limited utility as a tool for mood induction, it may serve as a functional tool for examination of the cerebral processes associated with affective verbal memory

    Low alpha power (7.5--9.5 Hz) changes during positive and negative affective learning

    No full text
    There is evidence that the positive and the negative word lists of the Affective Auditory Verbal Learning Test (AAVL) are useful with regard to mood induction. To date, however, changes in brain activation, as indicated by quantitative electroencephalographic recording, have not been examined. Thus, changes in low alpha power (7.5--9.5 Hz) were examined during and after completion of the positive or the negative learning list of the AAVL among 37 undergraduate men and women. Three primary findings from the study include the following: (1) Previously reported recall patterns were replicated; (2) participants who completed the negative list reported a significant decline in mood state at the end of the session; and (3) participants who completed the negative word list evidenced a significant reduction in low alpha power (in comparison with baseline) within the parietal regions. The findings noted above are seemingly counter to contemporary theories of mood regulation (i.e., asymmetrical changes in anterior activity, rather than changes in parietal regions). Although the AAVL may have limited utility as a tool for mood induction, it may serve as a functional tool for examination of the cerebral processes associated with affective verbal memory

    Low alpha power (7.5–9.5 Hz) changes during positive and negative affective learning

    No full text
    There is evidence that the positive and the negative word lists of the Affective Auditory Verbal Learning Test (AAVL) are useful with regard to mood induction. To date, however, changes in brain activation, as indicated by quantitative electroencephalographic recording, have not been examined. Thus, changes in low alpha power (7.5–9.5 Hz) were examined during and after completion of the positive or the negative learning list of the AAVL among 37 undergraduate men and women. Three primary findings from the study include the following: (1) Previously reported recall patterns were replicated\; (2) participants who completed the negative list reported a significant decline in mood state at the end of the session\; and (3) participants who completed the negative word list evidenced a significant reduction in low alpha power (in comparison with baseline) within the parietal regions. The findings noted above are seemingly counter to contemporary theories of mood regulation (i.e., asymmetrical changes in anterior activity, rather than changes in parietal regions). Although the AAVL may have limited utility as a tool for mood induction, it may serve as a functional tool for examination of the cerebral processes associated with affective verbal memory

    5HTTLPR predicts left fusiform gyrus activation to positive emotional stimuli

    No full text
    This study was designed to replicate and extend past research examining the impact of the serotonin transporter gene-linked polymorphic region (5HTTLPR) on neural activation during emotional processing. Six women with at least one short allele were compared to six age-matched women with long/long alleles of the 5HTTLPR. Participants were shown 36 positive and 36 negative slides from the International Affective Picture Set, while functional images were acquired using a 4-T magnetic resonance imaging scanner. Although we were unable to replicate past research demonstrating relatively increased amygdala activation among individuals with an “s” allele to negative stimuli, women with an s allele evidenced decreased left fusiform gyrus activation to positive emotional stimuli (as expected). We suggest that women with a short allele may be either less attentive or less “expert” with regard to positive emotional stimuli, and ideas for future research are presented
    corecore