29 research outputs found

    Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique

    Get PDF
    Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases. The purpose of this work was to review the options for the characterization of HILIC stationary phases and their applications for separations of polar compounds in complex matrices. The characteristics of the hydrophilic stationary phase may affect and in some cases limit the choices of mobile phase composition, ion strength or buffer pH value available, since mechanisms other than hydrophilic partitioning could potentially occur. Enhancing our understanding of retention behavior in HILIC increases the scope of possible applications of liquid chromatography. One interesting option may also be to use HILIC in orthogonal and/or two-dimensional separations. Bioapplications of HILIC systems are also presented

    Comparative patterns of plant invasions in the mediterranean biome

    Get PDF
    The objective of this work was to compare and contrast the patterns of alien plant invasions in the world’s five mediterranean-climate regions (MCRs). We expected landscape age and disturbance history to have bearing on levels of invasion. We assembled a database on naturalized alien plant taxa occurring in natural and semi-natural terrestrial habitats of all five regions (specifically Spain, Italy, Greece and Cyprus from the Mediterranean Basin, California, central Chile, the Cape Region of South Africa and Southwestern - SW Australia). We used multivariate (hierarchical clustering and NMDS ordination) trait and habitat analysis to compare characteristics of regions, taxa and habitats across the mediterranean biome. Our database included 1627 naturalized species with an overall low taxonomic similarity among the five MCRs. Herbaceous perennials were the most frequent taxa, with SW Australia exhibiting both the highest numbers of naturalized species and the highest taxonomic similarity (homogenization) among habitats, and the Mediterranean Basin the lowest. Low stress and highly disturbed habitats had the highest frequency of invasion and homogenization in all regions, and high natural stress habitats the lowest, while taxonomic similarity was higher among different habitats in each region than among regions. Our analysis is the first to describe patterns of species characteristics and habitat vulnerability for a single biome. We have shown that a broad niche (i.e. more than one habitat) is typical of naturalized plant species, regardless of their geographical area of origin, leading to potential for high homogenization within each region. Habitats of the Mediterranean Basin are apparently the most resistant to plant invasion, possibly because their landscapes are generally of relatively recent origin, but with a more gradual exposure to human intervention over a longer period

    Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931-2100

    No full text
    Aim Climate is an important determinant of species distributions. We assess different aspects of risk arising from future climate change by quantifying changes in the spatial distribution of future climatic conditions compared with the recent past. Location Europe. Methods A 10' × 10' resolution gridded data set of five climate variables was used to calculate expected changes to the area, distance and direction of 1931–60 climatic conditions under the HadCM3 climate model for four future climate scenarios based on different rates of greenhouse gas emissions (SRES scenarios). Three levels of tolerance ranges determined the thresholds for which future conditions are considered analogous to 1931–60 (pre-warming) conditions. Results For many parts of Europe, areas with pre-warming analogous climate conditions will be smaller and further away in the future than they are now. For any location in Europe, areas with pre-warming analogous mean annual temperature conditions will, on average, be reduced between 23.7% (B1 scenario) and 49.7% (A1FI scenario) by 2100 when assuming a medium tolerance range. The mean distance to these areas will, on average, increase between 272 km (B1) and 645 km (A1FI). These changes are more pronounced for temperature than for water availability variables and also for narrow tolerance ranges compared to wide tolerance ranges. Using a combined measure of both temperature and precipitation variables, areas with prewarming analogous conditions are predicted to be in a more northeasterly direction in the future, but there are considerable regional differences within Europe. Main conclusions The results suggest that, for some parts of Europe, the loss of area with any suitable climatic conditions represents the greatest risk to biodiversity, but in other regions the distances that species may have to move to reach suitable climatic conditions may be a greater problem. Quantifying the distance and direction in analyses of change of climatically suitable areas can add additional information for climate change risk assessments

    Quantifying components of risk for European woody species under climate change

    No full text
    Estimates of species extinction risk under climate change are generally based on differences in present and future climatically suitable areas. However, the locations of potentially suitable future environments (affecting establishment success), and the degree of climatic suitability in already occupied and new locations (affecting population viability) may be equally important determinants of risk. A species considered to be at low risk because its future distribution is predicted to be large, may actually be at high risk if these areas are out of reach, given the species' dispersal and migration rates or if all future suitable locations are only marginally suitable and the species is unlikely to build viable populations in competition with other species. Using bioclimatic models of 17 representative European woody species, we expand on current ways of risk assessment and suggest additional measures based on (a) the distance between presently occupied areas and areas predicted to be climatically suitable in the future and (b) the degree of change in climatic suitability in presently occupied and unoccupied locations. Species of boreal and temperate deciduous forests are predicted to face higher risk from loss of climatically suitable area than species from warmer and drier parts of Europe by 2095 using both the moderate B1 and the severe A1FI emission scenario. However, the average distance from currently occupied locations to areas predicted suitable in the future is generally shorter for boreal species than for southern species. Areas currently occupied will become more suitable for boreal and temperate species than for Mediterranean species whereas new suitable areas outside a species' current range are expected to show greater increases in suitability for Mediterranean species than for boreal and temperate species. Such additional risk measures can be easily derived and should give a more comprehensive picture of the risk species are likely to face under climate change

    An extended probabilistic approach of plant vital attributes: an application to European pollen records at 0 and 6 ka

    No full text
    International audienceAim This paper presents a probabilistic method of pollen spectra analysis. The method relies on a pollen taxon characterization using biotic and abiotic plant attribute modes, and their occurrence in a given pollen spectrum at a specific site. This type of analysis can provide an interpretation, which can lead to the reconstruction of the biome and, to an extent, of the abiotic conditions at the site. Methods The analysis has been carried out at the European scale using data provided by the European Pollen Database for about 1000 sites. This dataset contains about 50,000 pollen spectra from the last 21 ka. In these spectra, each pollen taxon has been characterized by a set of 10 chosen attributes. These have been selected with regard to their relevance in biome reconstruction, but also on the basis of available literature. By using the probability of occurrence of each taxon in a given pollen spectrum, it is possible to calculate an affinity index for the spectrum to the attribute considered. To overcome difficulties caused by pollen identification in low diversified pollen spectra, a co-occurrence concept has been used to give more information. Results The method has been validated on a set of 1327 modern surface samples by comparing the results to the major climatic and environmental variables that control the distribution of the vegetation. A reconstruction exercise on various characteristics of the plants was then carried out on a 6-ka dataset. This confirmed previous studies by showing a strong dominance of deciduous forest over most of Europe, related to a milder climate than at present in the north and a wetter and colder climate than at present in the south. By analysing the change in pollen/seed dispersion strategies and the light requirement, we show that the history of vegetation dynamics in relation to human influences can be assessed using this method. Main conclusions Our results show that the probabilistic method is an objective tool for pollen assemblage analysis. It allows reconstruction of various characteristics of the vegetation at the continental and global scale for periods and sites with significantly different climate conditions. This method can also be used to compare maps of vegetation attributes for the validation of the new generalized dynamic ecosystems models

    The History of the Core–Shell Particles and Applications in Active Pharmaceutical Ingredients Via Liquid Chromatography

    No full text
    corecore