32 research outputs found

    The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo

    Get PDF
    The aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles. © 2006 Springer-Verlag

    Imaging of the Muscle-Bone Relationship

    Get PDF
    Muscle can be assessed by imaging techniques according to its size (as thickness, area, volume, or alternatively, as a mass) and architecture (fiber length and pennation angle), with values used as an anthropometric measure or a surrogate for force production. Similarly, the size of the bone (as area or volume) can be imaged using MRI or pQCT, although typically bone mineral mass is reported. Bone imaging measures of mineral density, size, and geometry can also be combined to calculate bone’s structural strength—measures being highly predictive of bone’s failure load ex vivo. Imaging of muscle-bone relationships can, hence, be accomplished through a number of approaches by adoption and comparison of these different muscle and bone parameters, dependent on the research question under investigation. These approaches have revealed evidence of direct, mechanical muscle-bone interactions independent of allometric associations. They have led to important information on bone mechanoadaptation and the influence of muscular action on bone, in addition to influences of age, gender, exercise, and disuse on muscle-bone relationships. Such analyses have also produced promising diagnostic tools for clinical use, such as identification of primary, disuse-induced, and secondary osteoporosis and estimation of bone safety factors. Standardization of muscle-bone imaging methods is required to permit more reliable comparisons between studies and differing imaging modes, and in particular to aid adoption of these methods into widespread clinical practice
    corecore