65 research outputs found

    Moduli-Induced Vacuum Destabilisation

    Full text link
    We look for ways to destabilise the vacuum. We describe how dense matter environments source a contribution to moduli potentials and analyse the conditions required to initiate either decompactification or a local shift in moduli vevs. We consider astrophysical objects such as neutron stars as well as cosmological and black hole singularities. Regrettably neutron stars cannot destabilise realistic Planck coupled moduli, which would require objects many orders of magnitude denser. However gravitational collapse, either in matter-dominated universes or in black hole formation, inevitably leads to a destabilisation of the compact volume causing a super-inflationary expansion of the extra dimensions.Comment: 21 pages, 12 figure

    Strong Casimir force reduction through metallic surface nanostructuring

    Full text link
    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force plays a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.Comment: 11 pages, 8 figure

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter Îł\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    Solar fusion cross sections. II. The pp chain and CNO cycles

    Get PDF
    We summarize and critically evaluate the available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. We also discuss opportunities for further increasing the precision of key rates, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern Physics; various typos corrected and several updates mad

    Massless D-strings and moduli stabilization in type I cosmology

    Get PDF
    We consider the cosmological evolution induced by the free energy F of a gas of maximally supersymmetric heterotic strings at finite temperature and weak coupling in dimension D>=4. We show that F, which plays the role of an effective potential, has minima associated to enhanced gauge symmetries, where all internal moduli can be attracted and dynamically stabilized. Using the fact that the heterotic/type I S-duality remains valid at finite temperature and can be applied at each instant of a quasi-static evolution, we find in the dual type I cosmology that all internal NS-NS and RR moduli in the closed string sector and the Wilson lines in the open string sector can be stabilized. For the special case of D=6, the internal volume modulus remains a flat direction, while the dilaton is stabilized. An essential role is played by light D-string modes wrapping the internal manifold and whose contribution to the free energy cannot be omitted, even when the type I string is at weak coupling. As a result, the order of magnitude of the internal radii expectation values on the type I side is (lambda_I alpha')^{1/2}, where lambda_I is the ten-dimensional string coupling. The non-perturbative corrections to the type I free energy can alternatively be described as effects of "thermal E1-instantons", whose worldsheets wrap the compact Euclidean time cycle.Comment: 39 pages, 1 figur

    Spin-2 spectrum of defect theories

    Get PDF
    We study spin-2 excitations in the background of the recently-discovered type-IIB solutions of D'Hoker et al. These are holographically-dual to defect conformal field theories, and they are also of interest in the context of the Karch-Randall proposal for a string-theory embedding of localized gravity. We first generalize an argument by Csaki et al to show that for any solution with four-dimensional anti-de Sitter, Poincare or de Sitter invariance the spin-2 excitations obey the massless scalar wave equation in ten dimensions. For the interface solutions at hand this reduces to a Laplace-Beltrami equation on a Riemann surface with disk topology, and in the simplest case of the supersymmetric Janus solution it further reduces to an ordinary differential equation known as Heun's equation. We solve this equation numerically, and exhibit the spectrum as a function of the dilaton-jump parameter Δϕ\Delta\phi. In the limit of large Δϕ\Delta\phi a nearly-flat linear-dilaton dimension grows large, and the Janus geometry becomes effectively five-dimensional. We also discuss the difficulties of localizing four-dimensional gravity in the more general backgrounds with NS5-brane or D5-brane charge, which will be analyzed in detail in a companion paper.Comment: 41 pages, 6 figure

    Scalar-field Pressure in Induced Gravity with Higgs Potential and Dark Matter

    Full text link
    A model of induced gravity with a Higgs potential is investigated in detail in view of the pressure components related to the scalar-field excitations. The physical consequences emerging as an artifact due to the presence of these pressure terms are analysed in terms of the constraints parting from energy density, solar-relativistic effects and galactic dynamics along with the dark matter halos.Comment: 26 pages, 3 figures, Minor revision, Published in JHE

    Bulk Axions, Brane Back-reaction and Fluxes

    Full text link
    Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires details of the stabilization of the extra dimensions. In rugby ball solutions, for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources, the effects of brane back-reaction can be computed explicitly. This allows the calculation of the shape of the low-energy pGB potential and response of the extra dimensional geometry as a function of the perturbing brane properties. If the pGB-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to the pGB. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. We calculate the mass of the would-be zero mode, and briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings of the pGB to matter localized on the branes. Since the scalar can be light enough to be relevant to precision tests of gravity (in a technically natural way) this mechanism can be relevant to evading phenomenological bounds.Comment: 36 pages, JHEP styl

    Nuclear reactions in the Sun after SNO and KamLAND

    Full text link
    In this brief review we discuss the possibility of studying the solar interior by means of neutrinos, in the light of the enormous progress of neutrino physics in the last few years. The temperature near the solar center can be extracted from Boron neutrino experiments as: T=(1.57±0.01)107K T= (1.57 \pm 0.01) 10^7 K. The energy production rate in the Sun from pp chain and CNO cycle, as deduced from neutrino measurements, agrees with the observed solar luminosity to about twenty per cent. Progress in extracting astrophysical information from solar neutrinos requires improvement in the measurements of 3He+^3He+ \\4He→7Be+Îł^4He \to ^7Be+\gamma and p+14N→15O+Îłp+^{14}N \to ^{15}O+ \gamma.Comment: To appear in the Proceedings of Beyond the Desert '03, Fourth International Conference on Physics Beyond the Standard Model, Schloss Ringberg, Germany, June 9-14, 200

    Probing the short range spin dependent interactions by polarized 3^{3} 3 He atom beams

    Get PDF
    Experiments using polarized 3He atom beams to search for short range spin dependent forces are proposed. High intensity, high polarization, small beam size 3He atom beams have been successfully produced and used in surface science researches. By incorporating background reduction designs as combination shielding by ”-metal and superconductor and double beam paths, the precision of spin rotation angle per unit length could be improved by a factor of ~104. By this precision, in combination with a high density and low magnetic susceptibility sample source mass, and reversing one beam path if necessary, sensitivities on three different types of spin dependent interactions could be improved by as much as ~102 to ~108 over the current experiments at the millimeter range
    • 

    corecore