65 research outputs found
Moduli-Induced Vacuum Destabilisation
We look for ways to destabilise the vacuum. We describe how dense matter
environments source a contribution to moduli potentials and analyse the
conditions required to initiate either decompactification or a local shift in
moduli vevs. We consider astrophysical objects such as neutron stars as well as
cosmological and black hole singularities. Regrettably neutron stars cannot
destabilise realistic Planck coupled moduli, which would require objects many
orders of magnitude denser. However gravitational collapse, either in
matter-dominated universes or in black hole formation, inevitably leads to a
destabilisation of the compact volume causing a super-inflationary expansion of
the extra dimensions.Comment: 21 pages, 12 figure
Strong Casimir force reduction through metallic surface nanostructuring
The Casimir force between bodies in vacuum can be understood as arising from
their interaction with an infinite number of fluctuating electromagnetic
quantum vacuum modes, resulting in a complex dependence on the shape and
material of the interacting objects. Becoming dominant at small separations,
the force plays a significant role in nanomechanics and object manipulation at
the nanoscale, leading to a considerable interest in identifying structures
where the Casimir interaction behaves significantly different from the
well-known attractive force between parallel plates. Here we experimentally
demonstrate that by nanostructuring one of the interacting metal surfaces at
scales below the plasma wavelength, an unexpected regime in the Casimir force
can be observed. Replacing a flat surface with a deep metallic lamellar grating
with sub-100 nm features strongly suppresses the Casimir force and for large
inter-surfaces separations reduces it beyond what would be expected by any
existing theoretical prediction.Comment: 11 pages, 8 figure
Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos
Phobos Laser Ranging (PLR) is a concept for a space mission designed to
advance tests of relativistic gravity in the solar system. PLR's primary
objective is to measure the curvature of space around the Sun, represented by
the Eddington parameter , with an accuracy of two parts in ,
thereby improving today's best result by two orders of magnitude. Other mission
goals include measurements of the time-rate-of-change of the gravitational
constant, and of the gravitational inverse square law at 1.5 AU
distances--with up to two orders-of-magnitude improvement for each. The science
parameters will be estimated using laser ranging measurements of the distance
between an Earth station and an active laser transponder on Phobos capable of
reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10
ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12
cm aperture will permit links that even at maximum range will exceed a photon
per second. A total measurement precision of 50 ps demands a few hundred
photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser
ranging (SLR) facilities--with appropriate augmentation--may be able to
participate in PLR. Since Phobos' orbital period is about 8 hours, each
observatory is guaranteed visibility of the Phobos instrument every Earth day.
Given the current technology readiness level, PLR could be started in 2011 for
launch in 2016 for 3 years of science operations. We discuss the PLR's science
objectives, instrument, and mission design. We also present the details of
science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table
Solar fusion cross sections. II. The pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
Massless D-strings and moduli stabilization in type I cosmology
We consider the cosmological evolution induced by the free energy F of a gas
of maximally supersymmetric heterotic strings at finite temperature and weak
coupling in dimension D>=4. We show that F, which plays the role of an
effective potential, has minima associated to enhanced gauge symmetries, where
all internal moduli can be attracted and dynamically stabilized. Using the fact
that the heterotic/type I S-duality remains valid at finite temperature and can
be applied at each instant of a quasi-static evolution, we find in the dual
type I cosmology that all internal NS-NS and RR moduli in the closed string
sector and the Wilson lines in the open string sector can be stabilized. For
the special case of D=6, the internal volume modulus remains a flat direction,
while the dilaton is stabilized. An essential role is played by light D-string
modes wrapping the internal manifold and whose contribution to the free energy
cannot be omitted, even when the type I string is at weak coupling. As a
result, the order of magnitude of the internal radii expectation values on the
type I side is (lambda_I alpha')^{1/2}, where lambda_I is the ten-dimensional
string coupling. The non-perturbative corrections to the type I free energy can
alternatively be described as effects of "thermal E1-instantons", whose
worldsheets wrap the compact Euclidean time cycle.Comment: 39 pages, 1 figur
Spin-2 spectrum of defect theories
We study spin-2 excitations in the background of the recently-discovered
type-IIB solutions of D'Hoker et al. These are holographically-dual to defect
conformal field theories, and they are also of interest in the context of the
Karch-Randall proposal for a string-theory embedding of localized gravity. We
first generalize an argument by Csaki et al to show that for any solution with
four-dimensional anti-de Sitter, Poincare or de Sitter invariance the spin-2
excitations obey the massless scalar wave equation in ten dimensions. For the
interface solutions at hand this reduces to a Laplace-Beltrami equation on a
Riemann surface with disk topology, and in the simplest case of the
supersymmetric Janus solution it further reduces to an ordinary differential
equation known as Heun's equation. We solve this equation numerically, and
exhibit the spectrum as a function of the dilaton-jump parameter .
In the limit of large a nearly-flat linear-dilaton dimension grows
large, and the Janus geometry becomes effectively five-dimensional. We also
discuss the difficulties of localizing four-dimensional gravity in the more
general backgrounds with NS5-brane or D5-brane charge, which will be analyzed
in detail in a companion paper.Comment: 41 pages, 6 figure
Scalar-field Pressure in Induced Gravity with Higgs Potential and Dark Matter
A model of induced gravity with a Higgs potential is investigated in detail
in view of the pressure components related to the scalar-field excitations. The
physical consequences emerging as an artifact due to the presence of these
pressure terms are analysed in terms of the constraints parting from energy
density, solar-relativistic effects and galactic dynamics along with the dark
matter halos.Comment: 26 pages, 3 figures, Minor revision, Published in JHE
Bulk Axions, Brane Back-reaction and Fluxes
Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs)
whose shift symmetry is explicitly broken only by physics localized on branes.
Reliable calculation of their low-energy potential is often difficult because
it requires details of the stabilization of the extra dimensions. In rugby ball
solutions, for which two compact extra dimensions are stabilized in the
presence of only positive-tension brane sources, the effects of brane
back-reaction can be computed explicitly. This allows the calculation of the
shape of the low-energy pGB potential and response of the extra dimensional
geometry as a function of the perturbing brane properties. If the
pGB-dependence is a small part of the total brane tension a very general
analysis is possible, permitting an exploration of how the system responds to
frustration when the two branes disagree on what the proper scalar vacuum
should be. We show how the low-energy potential is given by the sum of brane
tensions (in agreement with common lore) when only the brane tensions couple to
the pGB. We also show how a direct brane coupling to the flux stabilizing the
extra dimensions corrects this result in a way that does not simply amount to
the contribution of the flux to the brane tensions. We calculate the mass of
the would-be zero mode, and briefly describe several potential applications,
including a brane realization of `natural inflation,' and a dynamical mechanism
for suppressing the couplings of the pGB to matter localized on the branes.
Since the scalar can be light enough to be relevant to precision tests of
gravity (in a technically natural way) this mechanism can be relevant to
evading phenomenological bounds.Comment: 36 pages, JHEP styl
Nuclear reactions in the Sun after SNO and KamLAND
In this brief review we discuss the possibility of studying the solar
interior by means of neutrinos, in the light of the enormous progress of
neutrino physics in the last few years. The temperature near the solar center
can be extracted from Boron neutrino experiments as: . The energy production rate in the Sun from pp chain and CNO cycle, as
deduced from neutrino measurements, agrees with the observed solar luminosity
to about twenty per cent. Progress in extracting astrophysical information from
solar neutrinos requires improvement in the measurements of \\ and .Comment: To appear in the Proceedings of Beyond the Desert '03, Fourth
International Conference on Physics Beyond the Standard Model, Schloss
Ringberg, Germany, June 9-14, 200
Probing the short range spin dependent interactions by polarized 3 He atom beams
Experiments using polarized 3He atom beams to search for short range spin dependent forces are proposed. High intensity, high polarization, small beam size 3He atom beams have been successfully produced and used in surface science researches. By incorporating background reduction designs as combination shielding by ”-metal and superconductor and double beam paths, the precision of spin rotation angle per unit length could be improved by a factor of ~104. By this precision, in combination with a high density and low magnetic susceptibility sample source mass, and reversing one beam path if necessary, sensitivities on three different types of spin dependent interactions could be improved by as much as ~102 to ~108 over the current experiments at the millimeter range
- âŠ