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1 Introduction

The SO(32) heterotic and type I strings are dual perturbative descriptions of the same
underlying theory [1–4]. This is easily observed at the level of the low energy effective
actions, which are equivalent after certain field redefinitions. This follows from the fact
that short massless supermultiplets have protected masses and that N10 = 1 supergravity
coupled to ten dimensional super Yang-Mills theory with given gauge group is unique at
the two-derivative level. One interesting facet of the equivalence is that in ten dimensions,
the heterotic and type I string couplings are inverse to one another, and thus one has the
opportunity to uncover strong coupling effects. In dimension D ≥ 7 (D ≤ 5), this leads to
a strong-weak (weak-weak) duality, while for D = 6, string couplings and internal volumes
are interchanged [5–8].

In the literature, most of the applications of string dualities have been based on BPS
states and therefore restricted to models where supersymmetry is preserved in static uni-
verses. In general, extending these ideas to non-supersymmetric cases (see [9, 10] for some
examples) and cosmological evolutions is difficult. However, such a project can still be ad-
dressed within the context of no-scale models [11–14]. The latter are defined at the classical
level by backgrounds associated to vanishing minima of a scalar potential, which admit a
flat direction parameterized by the scale of spontaneous supersymmetry breaking. The non-
trivial vacuum energy, which arises at the quantum level, backreacts on the flat and origi-
nally static universe, and induces a quasi-static time evolution in the background fields [15].

To be specific, start with a dual pair of supersymmetric heterotic and type I models. As
follows from the adiabatic argument of [16], one may implement on both sides a spontaneous
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breaking of supersymmetry, thus giving a new dual pair. For example, if the heterotic
theory is in a perturbative regime and the spontaneous breaking at the classical level is
compatible with flat Minkowski space, the cosmological evolution induced at the one-loop
level can be reinterpreted in the dual type I regime. In this paper, we spontaneously break
supersymmetry by considering the models at finite temperature. This can be implemented
at the level of the two dimensional CFT by compactifying the Euclidean time on a circle,
whose boundary conditions depend on the fermion number [17]. In this case, the one-loop
heterotic effective potential discussed above is nothing but the free energy of a perfect gas
of supersymmetric strings. Applying the heterotic/type I duality, we find the existence of
novel contributions to the type I effective potential coming from light D-strings. Despite
being non-perturbative, these corrections have a large impact on the cosmological evolution,
as well as on the low energy spectrum of the theory, even at weak type I string coupling.

A second method to spontaneously break supersymmetry is by introducing “geometric”
fluxes along internal cycles [18–22]. When the R-symmetry charge associated to the flux is
the fermion number, this method is related to the finite temperature case by a double Wick
rotation. In this paper, we only explore the thermal breaking for simplicity and clarity, as
most of our results have a direct generalization to the second case. In realistic situations,
one must include zero temperature spontaneous supersymmetry breaking before switching
on finite temperature. In this case, a general picture arises, where the induced cosmology
can be divided into different stages. In the Hagedorn era, where the temperature T is
close to the string scale Ms, a phase transition between pre- and post-big bang evolutions
takes place. It can be described along the lines of refs. [23, 24] at the level of the two
dimensional CFT and is both free of initial singularity and consistent with perturbation
theory. As the temperature drops, the cosmology induced by the one-loop effective potential
can be trusted until infrared effects become relevant, such as in the cases of radiative
breaking or confining gauge groups. For example, in standard GUT scenarios, this defines
intermediate eras where the temperature evolves in either of the ranges Ms > T > ΛGUT

or ΛGUT > T > MEW, where ΛGUT and MEW are the GUT and electroweak scales [25–30].
These intermediate eras are connected by a phase transition where the dynamics responsible
for the breaking of the GUT group must be taken account. After the electroweak phase
transition, the conventional history of the universe follows with the hadronic, leptonic and
nucleosynthesis eras. . .

One feature of the above Hagedorn and intermediate eras is the possibility to stabilize
internal moduli [26, 31, 32]. This is an important issue since current observations of the
gravitational force place lower limits on scalar masses (see for example [33]). Many ap-
proaches address this question by considering compactification spaces where (geometrical
or non-geometrical) internal fluxes are switched on at the outset, while preserving some
amount of supersymmetry [34–38]. This leads to a partial stabilization since flat directions
always persist in such models, at least at the perturbative level. However, we would like
to stress that once supersymmetry is broken, flat directions are generically lifted in string
theory. This was considered long ago in non-supersymmetric heterotic string backgrounds,
such as the SO(16)×SO(16) tachyon free theory toroidally compactified [39, 40]. However,
minimization of the moduli-dependent “cosmological constant” generated by loop correc-
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tions in such models leads to an unacceptably large vacuum energy at the minima, since
supersymmetry is explicitly broken at the string scale. In [41, 42], it was realized that a
gas of string modes, which carry both winding and momenta, generate a free energy that
enables stabilization of radii moduli. Upon introducing a zero temperature spontaneous
breaking of supersymmetry at the string tree level, it was shown in [27–32, 43] that this
effect also has a quantum version, with the thermal gas and free energy replaced by virtual
strings which induce an effective potential.1 An advantage of this type of stabilization
is that during the intermediate eras, the induced masses are not constant. Instead, they
follow the time-evolution of the temperature T (t) and supersymmetry breaking modulus
M(t), which drop proportionally. It is only after the electroweak phase transition that M(t)
is stabilized and that the induced moduli masses become constant. As a result, the energy
of the moduli with time-dependent masses is diluted during the intermediate eras, and the
cosmological moduli problem [47–49]2 is avoided. Moreover, the decrease of M(t) ∝ T (t)
during the intermediate eras gives a dynamical explanation of the hierarchy between the
supersymmetry breaking scale and the string scale, M �Ms.

This above dynamical moduli stabilization relies on the existence of perturbative states
in the string spectrum, whose masses are determined by the expectation value of the moduli
and vanish at the stabilization points. For instance, in toroidal or orbifold compactifications
of the heterotic string, if the radius Ri of some factorized internal circle is not participating
in the spontaneous breaking of supersymmetry, it can be attracted to the self dual point
Ri = 1 associated to an enhanced SU(2) level one Kac Moody algebra. Another simple
example can be realized in type II superstring, when the internal circle is used to sponta-
neously break the supersymmetries generated by the right-moving sector via the Scherck
Schwarz mechanism. In this case, Ri can be stabilized at the fermionic point Ri = 1/

√
2

corresponding to a Kac Moody level two SU(2) extension [23]. However, since this type II
setup is intrinsically left/right asymmetric, it cannot be extended to orientifold models in
a straightforward way. Thus, the purpose of the present work is to infer how the internal
moduli in type I no-scale models are stabilized by using our knowledge of the dual heterotic
picture. As said before, we consider only thermal effects, as this is sufficient to uncover
the mechanism. More specifically, using heterotic/type I duality at finite temperature, we
infer the existence of non-pertrubative contributions to the thermal free energy of type I
superstrings. These contributions are due to light, or even massless, D-strings which wrap
the internal cycles and participate to the dynamical stabilization of all the internal moduli,
including those in the RR sector and the Wilson lines.

1In refs. [44–46], the effect of the Coleman-Weinberg effective potential is explicitly subtracted in order

to isolate the backreaction on the moduli arising from particle production near extra massless species points.

To be substantial, this mechanism supposes the moduli already have non-trivial motions at tree level. Since

the no-scale models are based on classical static backgrounds, the moduli velocities occur as backreactions

of the one-loop effective potential and particle production is higher order in perturbation theory.
2A simplified statement of this problem is that the energy of scalars with constant masses dilutes slower

than the thermal energy of radiation, and so heavy scalars tend to dominate at late times, which can cause

problems for nucleosynthesis. This may be fixed by requiring the heavy scalars to be unstable so that their

fluctuations eventually decay, thereby reheating space-time. However, the reheating process creates extra

entropy and one can run into problems with baryogensis.
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We derive in section 2 the free energy of a gas of weakly coupled perturbative states
in type I superstring, in the simple case where the internal space is a factorized torus. We
describe the induced cosmological evolution and find the radii moduli are flat directions
of the thermal potential. In section 3, using the dual heterotic model at weak coupling,
we correct this naive analysis by taking into account contributions of non-perturbative
states to the free energy. In particular, D-strings modes are found to be light when the
radii are in a neighborhood of

√
λI, where λI � 1 is the ten dimensional type I string

coupling. They produce local minima of the thermal potential which are responsible for
the stabilization of the radii at

√
λI. In type I, this dynamical effect occurs at strong (weak)

coupling when D ≥ 7 (D ≤ 6). However, since the BPS masses of the light D1-branes are
protected by supersymmetry, our results are also valid at small string coupling for D ≥ 7.
In section 4, we reexamine the form of the corrections to the free energy along the lines
of [50, 51], and interpret the non-perturbative contributions as arising from “thermal E1-
instantons”. What is meant by this is that the Euclidean worldsheets of the D1-branes
wrap the Euclidean time circle. In section 5, we generalize our results: The one-loop
heterotic free energy is computed, with all of the internal moduli taken into account. We
find that at certain points in moduli space, all scalars, except the dilaton, may be stabilized
for D ≥ 4.3 On the dual type I side, the non-perturbative effects induce a stabilization
of the internal NS-NS and RR moduli in the closed string sector, and the Wilson lines
in the open string sector. For the special case of D = 6, the internal volume modulus
remains a flat direction, while the dilaton is stabilized at a small value. In section 6, we
give explicit examples of loci in moduli space where only the flat direction of the dilaton
survives. Section 7 is devoted to our conclusions and perspectives.

2 Naive perturbative type I thermal cosmology

In this section, we derive the cosmology induced by thermal effects in the purely pertur-
bative type I superstring theory toroidally compactified down to D ≥ 3 dimensions. We
shall see in the next section how light solitonic states correct this picture in a drastic
way. In the following, quantities are denoted in the type I context with subscripts I and,
throughout this paper, “hatted” (“un-hatted”) ones are referring to the string (Einstein)
frame. Finite temperature T̂I is implemented by considering an Euclidean time of period
β̂I = 2πRI0 = 1/T̂I, and coupling the associated S1(RI0) lattice of zero modes to the
fermion number. We restrict for the moment our study to the case of a factorized internal
space

∏9
i=D S

1(RIi) and analyze the dynamics of the radii RIi.
Working in a perturbative regime, there are four contributions to the Euclidean one-

loop partition function needed to express the free energy density, namely the torus, Klein-
bottle, annulus and Möbius strip vacuum-to-vacuum amplitudes T , K, A andM. In units

3Additionally, for D ≥ 5 the dilaton approaches a constant finite value at late times and the cosmological

evolution is radiation dominated. For D = 4, the dilaton decreases logarithmically with cosmological time

and the coherent motion of all moduli is such that the metric evolution is that of a radiation dominated

universe, H2 ∝ 1/a4. However, non-perturbative effects from NS5 or D5-branes in the heterotic or type I

theories should be taken into account in four dimensions and may play a role in stabilizing the dilaton.

– 4 –



J
H
E
P
0
6
(
2
0
1
1
)
0
6
0

where α′ = 1, a little work yields (see the appendix),

T =
β̂IV̂I

β̂DI

{
s2

0 cD +
∑

A≥0, Ā≥0, ~m, ~n
A−Ā=~m·~n

(A,~m,~n)6=(0,~0,~0)

sAsĀG

(
2πRI0

[
4A+

9∑
i=D

(mi

RIi
− niRIi

)2] 1
2

)}
, (2.1)

where V̂I is the regularized volume of the (D−1)-dimensional space, cD is Stefan’s constant
for radiation in dimension D and the function G is defined in terms of a modified Bessel
function of the second kind, KD

2
(x):

cD =
Γ
(
D
2

)
π
D
2

∑
k̃0

1
|2k̃0 + 1|D

, G(x) = 2
∑
k̃0

(
x

2π|2k̃0 + 1|

)D
2

KD
2

(
x |2k̃0 + 1|

)
. (2.2)

The integer sA (sĀ) counts the degeneracy at oscillator level A (Ā) on the left (right)-
moving side of the worldsheet, while mi (ni) labels the momentum (winding) number along
the i-th cycle of the internal torus.4 In (2.1), the first term in the braces is the contribution
of the massless modes, with quantum numbers (A, ~m,~n) = (0,~0,~0) and associated to
the N10 = 1 supergravity multiplet in ten dimensions. The Klein-bottle contribution K
vanishes. The annulus plus Möbius amplitude takes in a similar way the form

A+M =
β̂IV̂I

β̂DI

{
N2 −N

2
s0 cD +

∑
A≥0, ~m

(A,~m)6=(0,~0)

N2 − (−1)AN
2

sAG

(
2πRI0

[
A+

9∑
i=D

(mi

RIi

)2] 1
2

)}
,

(2.3)
where N = 32 and the first term is associated to the N10 = 1 SO(32) super-vector multiplet
in ten dimensions. The partition function is given by the sum ZI = T + K +A +M. At
high temperatures, it becomes ill-defined. Examining T , one finds that winding modes
along the Euclidean time circle become tachyonic when RI0 < RIH, where RIH =

√
2 is

the Hagedorn radius. This divergence of ZI is not a sickness of the theory, but rather the
signal of a phase transition [52–55]. From now on, we restrict ourselves to temperatures
below T̂IH ≡ 1/(2πRIH).

The free energy density is defined in terms of the partition function as F̂I = −ZI/(β̂IV̂I).
It is expressed in terms of the G-function, whose arguments are the ratios of the spectrum
masses to the temperature. Since

G(x) = cD −
cD−2

4π
x2 +O(x4) when x ' 0 , G(x) ∼

( x
2π

)D−1
2
e−x when x� 1, (2.4)

the dominant contribution at low temperature (compared to the string scale) arises from
the first terms of (2.1) and (2.3) and corresponds to the free energy density of thermal
radiation,

F̂I = −
(
s2

0 +
N2 −N

2
s0

)
cD T̂

D
I + · · · . (2.5)

4Note that the condition A− Ā = ~m · ~n provides the level matching.
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However, if some RIi is large (small) enough, RIi > 2πRI0 (RIi < 1/(2πRI0)), pure Kaluza-
Klein (winding) modes yield additional terms of the same order. The contributions asso-
ciated to the remaining states are exponentially suppressed.

It is straightforward to apply the techniques introduced in [31, 32] for closed strings
to study the backreaction of the type I free energy on the originally static background.
For arbitrary initial conditions at the exit of the Hagedorn era, one finds that the system
is attracted to a radiation dominated evolution, where all internal radii and the dilaton
are frozen at non-specific values depending on the initial data. Quantitatively, the final
constant values of the RIi’s sit in the range

1
2πRI0

< RIi < 2πRI0 , i = D, . . . , 9, (2.6)

where RI0 is increasing with time, corresponding to an expanding and cooling universe.
Actually, if at some time t a radius RIj is outside this range, we find RIj(t) and RI0(t) always
evolve so that the condition (2.6) is finally satisfied, after which the evolution of RIj comes
to a halt. This may be seen by examining the force on the modulus µj = ln(2πRI0/RIj)
(or ln(2πRI0RIj)) [31, 32].

A difference compared to the type II and heterotic string cases, is that the open string
sector is not invariant under T-duality, RIi → 1/RIi (for any i), due to a lack of winding
quantum numbers in the open sector. For instance, for arbitrary RIj (for a given j), while
the other radii satisfy (2.6), the effective potential for RIj , which is exactly the free energy
density, simplifies to

F̂I =−T̂DI

{(
s2

0 +
N2 −N

2
s0

)[
cD+

∑
mj 6=0

G

(
2πRI0

|mj |
RIj

)]
+O(e−2πRI0)

}
, 2πRI0 < RIj

F̂I =−T̂DI

{(
s2

0 +
N2 −N

2
s0

)
cD +O(e−2πRI0)

}
,

1
2πRI0

< RIj < 2πRI0

F̂I =−T̂DI

{
N2 −N

2
s0 cD + s2

0

[
cD+

∑
nj 6=0

G
(

2πRI0|nj |RIj

)]
+O(e−2πRI0)

}
, RIj <

1
2πRI0

(2.7)
and is shown in figure 1, in Einstein frame. When RIj < 1, the theory is actually better
understood in the T-dual type I’ picture obtained by inverting RIj . More importantly,
there is no local minimum of the free energy density where RIj (as well as the RIi’s) can be
attracted and stabilized. This is contrary to the heterotic case, where enhanced symmetry
points exist and imply a local increase of the number of massless states. However, we shall
find that the above purely perturbative analysis is missing important contributions from
massless solitons.

3 Heterotic/type I cosmological duality

Given that heterotic and type I theories at zero temperature are S-dual in ten dimensions, it
is a simple but non-trivial fact that they remain S-dual at finite temperature. Technically,
the backgrounds used to analyze the thermal ensembles are freely acting orbifolds, obtained
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T Ds0b0cD

T D(9−D)2s0b−1cD

−F

0
−ln2πRI0 ln λI

2πRI0
1
2
lnλI ln2πRI0 lnRIj

Figure 1. Thermal effective potential (in Einstein frame) for RIj , when all other internal radii
satisfy (2.6). The dashed curve takes only into account the perturbative type I states. The solid
one is obtained by heterotic/type I S-duality and receives corrections from light D-string modes.

by modding out with (−1)F δ0, where δ0 is an order-two shift along the Euclidean time circle
and F is the fermion number. Using the “adiabatic argument” of [16], after such a free
action, the two theories remain dual. Since the cosmological evolutions we study are quasi-
static, it is valid to apply at each time an S-duality transformation on the heterotic side,
in order to derive non-perturbative contributions to the type I free energy and its resulting
backreaction.

S-dual SO(32) heterotic string. Let us apply this point of view to the type I back-
ground considered in section 2. The dual theory is the SO(32) heterotic string compactified
on
∏9
i=D S

1(Rhi), where we use the subscript h to denote heterotic quantities. As in the
type I case, the partition function is only well defined when the temperature T̂h = 1/β̂h =
1/(2πRh0) is below the heterotic Hagedorn temperature, i.e.Rh0 > RhH ≡ (1+

√
2)/
√

2. As
shown in the appendix, the heterotic partition function can be brought into a form divided
in three parts as follows:

Zh =
β̂hV̂h

β̂Dh

{
s0b0 cD +

9∑
i=D

2s0b−1G

(
2πRh0

∣∣∣ 1
Rhi
−Rhi

∣∣∣)
+

∑
A≥0, Ā≥−1, ~m, ~n

A−Ā=~m·~n
(A,~m,~n)6=(0,ε~ei,ε~ei),
∀i,∀ε=−1,0,1

sAbĀG

(
2πRh0

[
4A+

9∑
j=D

( mj

Rhj
− njRhj

)2] 1
2

)}
,

(3.1)

where the degeneracy bĀ of the right-moving bosonic string oscillator modes is defined
from level −1. The first contribution in Zh is associated to the massless states labeled by
(A, ~m,~n) = (0,~0,~0). They arise from the N10 = 1 supergravity and SO(32) super-vector
multiplets in ten dimensions. The second contribution comes from modes whose masses
can vanish at particular values of the internal radii. For each i, these states are labeled
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as (A, ~m,~n) = (0, ε ~ei, ε ~ei), where ε = ±1 and ~ei is the unit vector in the direction i.
They are massless at the self-dual point Rhi = 1, where they enhance the gauge symmetry,
U(1) → SU(2). The last line in (3.1) arises from the states which are never massless.
It becomes substantial when Kaluza-Klein (winding) states become light, in the regime
where some Rhi’s are large (small) compared to 2πRh0 (1/(2πRh0)). All other modes,
being always super heavy as compared to the temperature scale, yield to exponentially
suppressed contributions (see eq. (2.4)).

Duality map. In ten dimensions, the heterotic/type I S-duality identifies the Einstein
frame metrics and inverts the string couplings, λh = eφ

(10)
h = e−φ

(10)
I = 1/λI [1–4]. In

lower dimension D, these relations translate into a dictionary between the Einstein frame
metrics, the internal radii and dilatons [5–8]:

ds2
h(D) = ds2

I(D)

Rhi = RIi√
λI
≡ RIi

e
− 1

2φ
(D)
I

(
Q9
j=D 2πRIj)1/4 , i = 0 or D, . . . , 9,

φ
(D)
h = −D−6

4 φ
(D)
I − D−2

8

∑9
i=D ln (2πRIi) ,

(3.2)

where the D-dimensional dilatons are defined as φ(D)
h,I = φ

(10)
h,I −

1
2

∑9
i=D ln(2πRh,Ii). Note

that the Euclidean radii RI0 and Rh0 are included in the above relations. The inverse maps,
which relate the type I fields in terms of heterotic quantities, are obtained by exchanging
the subscripts h↔ I.

We consider non-trivial evolutions for the Einstein frame metric, dilaton and internal
radii moduli. It is easily checked that the tree level heterotic and type I actions match,
under the S-duality transformation (3.2) (i.e.Stree

h = Stree
I ). The one-loop finite temperature

effective potentials were computed using Euclidean backgrounds with laps functions Rh,I0

in the string frames. For the Lorentzian Einstein frame metric,

ds2
(D) = 1

(2π)2

[
−β(x0)2dx02 + a(x0)2

(
dx12 + · · ·+ dxD−12

)]
β = 2πRh,I0 e

− 2
D−2

φ
(D)
h,I , aD−1 = V̂h,I e

− 2(D−1)
D−2

φ
(D)
h,I ,

(3.3)

the corresponding first order correction to the tree level action Stree
h,I is given by

S1-loop
h,I = −

∫
dDx

√
−g(D)Fh,I where Fh,I = −

Zh,I

βaD−1
. (3.4)

Note that we do not distinguish between the heterotic and type I inverse temperature β
and scale factor a in (3.3), as they are measured in Einstein frame and are identified under
the duality map (3.2). To be exactly equivalent, the effective actions should be corrected
to all orders in perturbation theory and include non-perturbative effects as well. In the
following, we will consider the heterotic point of view at weak coupling, eφ

(D)
h � 1, restrict

our computations at the one-loop order, and deduce the type I behavior in the dual regime.

Dual type I cosmological evolution. To start, we apply the duality map to (3.1)
and note that the first term exactly matches the sum of the first contributions in (2.1)
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and (2.3). This follows from the equality b0 = s0 + (N2−N)/2 and is due to the fact that
the supergravity and SO(32) super-vector multiplets are short, with protected vanishing
masses. Next, we concentrate on the interpretation and cosmological implications of the
remaining terms in (3.1). In the weakly coupled heterotic string, eφ

(D)
h � 1, the time

evolution of the universe for arbitrary initial conditions at the exit of the Hagedorn era can
be analyzed along the lines of refs. [31, 32]. We first summarize the results here and then
derive the dual type I cosmological behavior:

• When all radii satisfy |Rhi − 1/Rhi| < 1/(2πRh0), i = D, . . . , 9, the heterotic free
energy density derived from (3.1) takes the form:

Fh = −TD
{
s0b0 cD +

9∑
i=D

2s0b−1G

(
2πRh0

∣∣∣ 1
Rhi
−Rhi

∣∣∣)+O(e−2πRh0)

}
. (3.5)

Thanks to the properties (2.4), the states with quantum numbers (A, ~m,~n) =
(0, ε~ei, ε~ei) are responsible for the existence of a local minimum of Fh at RhD =
· · · = Rh9 = 1. The internal radii can be attracted and stabilized at this SU(2)10−D

enhanced symmetry point. Moreover, for D ≥ 5 the string coupling eφ
(D)
h (and thus

λh) freezes to some constant value eφ
(D)
h0 determined by the initial conditions. For

D = 4, the dilaton φ
(4)
h does not converge to a constant but instead decreases loga-

rithmically with cosmological time. We show this in section 5 in a general context
where we take into account all internal moduli. The rest of this section is valid for
D ≥ 5, while for D = 4 one has to keep in mind the late time evolution of φ(4)

h .

Applying the duality map (3.2), the ratios of the masses of the above winding-
momentum states to the temperature become:

M̂hi

T̂h

≡ 2πRh0

∣∣∣Rhi −
1
Rhi

∣∣∣ = 2πRI0

∣∣∣RIi

λI
− 1
RIi

∣∣∣ ≡ M̂Ii

T̂Ii

. (3.6)

From the type I point of view, the corresponding BPS states have a natural interpre-
tation as D (or anti-D)-strings wrapped once along the circles S1(RIi), with one unit
of momentum. The heterotic cosmology translates into the type I context as follows.
Whenever the type I radii start out in the dual range |RIi/λI − 1/RIi| < 1/(2πRI0),
the light D-string modes can stabilize them at the point

RIi =
√
λI0 , i = D, . . . , 9, (3.7)

where λI0 = 1/λh0 � 1 is the late time constant value of the string coupling in
ten dimensions. This implies the open string cosmology is well understood in type I,
rather than in the T-dual picture in type I’. At each time, the width of the symmetric
well of the potential for lnRIi is

√
λI/(2πRI0) (see figure 1). In total, if we denote by

φ
(D)
I0 the asymptotic value of the type I dilaton in D dimensions and use the inverse

relations (3.2), the moduli are found to converge as follows,

eφ
(D)
I (t)−→eφ

(D)
I0 ≡ e−

D−6
4
φ

(D)
h0

(2π)
(10−D)(D−2)

8

, RIi(t)−→ e
2

D−6
φ

(D)
I0 (2π)

10−D
D−6 =

1

e
1
2
φ

(D)
h0 (2π)

10−D
4

,

(3.8)
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while the temperature and scale factor asymptotic behaviors are those of a radiation
dominated era, T−1(t) ∼ a(t) ∼ t2/D, where t is the cosmological time. Some remarks
are in order:

� For D > 6, (3.8) shows that the type I cosmology is at strong coupling. In this
regime, solitons are generically light and the need to include their effects in the
low energy effective action is not surprising.

� For D = 6, the asymptotic values of the moduli are eφ
(6)
I0 = 1/(2π)2 and RIi(t)→

e−
1
2
φ

(6)
h0 /(2π). The type I picture is perturbative.

� For D < 6, the type I cosmological evolution is at weak coupling. However, we
observe the necessity to take into account the contributions arising from solitons
which are light, when we sit in the neighborhood of the enhanced symmetry
points.

In summary, for D 6= 6 in type I, the internal radii are stabilized while the dilaton
φ

(D)
I freezes somewhere along its flat direction. On the contrary, for D = 6, the

dilaton is stabilized, all complex structures RIi/RIj are also stabilized at one, while
the internal space volume

∏9
i=D(2πRIi) freezes along a flat direction. This is not a

surprise, since in D = 6 the heterotic/type I duality exchanges internal volumes and

string couplings:
∏9
i=D(2πRh,Ii)↔ 1/e2φ

(6)
I,h .

• If at some epoch one of the heterotic internal radii satisfies Rhj > 2πRh0, while the
9−D remaining ones are stabilized, Rhi = 1 for i 6= j, the free energy density deduced
from (3.1) becomes

Fh =−TD
(
s0b0 + (9−D)2s0b−1

)[
cD +

∑
mj 6=0

G

(
2πRh0

|mj |
Rhj

)]
+O(e−2πRh0). (3.9)

We see that in addition to the massless supergravity and SO(32) super-vector multi-
plets, there are also contributions coming from their Kaluza-Klein descendants, which
are light since Rhj is large. Applying the duality rules and comparing to the pertur-
bative type I result in the first line of (2.7), we observe a match up to an additional
contribution (9 − D) 2s0b−1 to the overall numerical coefficient. This discrepancy
arises from the extra massless D (or anti-D)-strings responsible for the stabilization
of the RIi’s at

√
λI. Therefore, the main difference with the pure perturbative anal-

ysis is that the plateau of the effective potential is lowered and that the slope for
RIj > 2πRI0 is steeper (see figure 1). The cosmological evolution is however similar
to the one discussed below (2.6). As their heterotic counterparts [31, 32], RIj(t) and
RI0(t) evolve such that the regime where RIj(t) < 2πRI0(t) is reached. After that,
RIj freezes along its plateau or is stabilized at

√
λI as explained before.

• In a similar way, if a heterotic radius satisfies Rhj < 1/(2πRh0), while the others are
stabilized at their self-dual points, Rhi = 1 for i 6= j, we have

Fh =−TD
(
s0b0 + (9−D) 2s0b−1

)[
cD +

∑
nj 6=0

G
(

2πRh0|nj |Rhj

)]
+O(e−2πRh0). (3.10)
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In this case, substantial contributions arise from the winding modes along S1(Rhj),
which are light since Rhj is small enough. Their effect is to attract Rhj(t) to values
larger than 1/(2πRh0(t)) [31, 32]. Applying the S-duality rules to translate this
statement in the type I context, we find that if RIj < λI/(2πRh0) at some time, the
evolution of these moduli implies we end in a regime where λI/(2πRh0) < RIj , after
which the internal modulus freezes or is stabilized at

√
λI. Noting that the argument

of the G-function in (3.10) becomes

M̂hj

T̂h

≡ 2πRh0 |nj |Rhj = 2πRI0 |nj |
RIj

λI
≡
M̂Ij

T̂I

, (3.11)

we conclude that the above mechanism is due to two sets of towers of D-string winding
modes along S1(RIj). The first one contains “solitonic descendants” of the pertur-
bative massless supergravity and SO(32) super-vector multiplets. The second set is
associated to the descendants of the D (or anti-D)-strings responsible for the stabiliza-
tion of the (9−D) internal radii RIi at

√
λI. The net result of these non-perturbative

light states is to render the type I free energy explicitly invariant under the “non-
perturbative T-duality” RIj → λI/RIj (see figure 1).5

Comments. To conclude this section, we would like to make some remarks. We first
observe that under the duality map (3.2), the Hagedorn radii do not match. We thus infer
from the perturbative heterotic side a new value of the Hagedorn radius in type I, when λI

is large:

RIH =

{ √
2 for λI � 1

√
λI

1+
√

2√
2

for λI � 1
· (3.12)

From a cosmological point of view, RIH in the regime λI(t) � 1 is thus a time-dependent
scale. Note that this non-perturbative expression for RIH obtained once D-strings are taken
into account can be relevant even at weak coupling, eφ

(D)
I � 1. This is for instance the case

for D ≤ 6, when
√
λI and the RIi’s reach the asymptotic value

√
λI0 � 1.

For D ≥ 7, the stabilization of the internal type I radii at
√
λI0 � 1 occurs at strong

coupling, eφ
(D)
I � 1. However, the D-string states responsible for this effect are BPS, so

that their masses are protected by supersymmetry. Thus, these modes remain massless for
arbitrary λI, when RIi =

√
λI. It follows that the type I free energy density can easily be

determined when λI � 1 and RIi '
√
λI. It is actually given by (3.5), once translated in

terms of dual type I variables. The justification of this statement is based on the following
facts. In this regime, the string coupling is weak, eφ

(D)
I � 1, and the contribution of the

perturbative part of the spectrum is that of a perfect gas. Moreover, the contribution of
the light solitons is of identical form, since SU(2)’s (gauge) symmetries transform them
into the perturbative modes in the Cartan subalgebras. We conclude that the mechanism
of stabilization of the internal type I radii remains valid at weak coupling eφ

(D)
I � 1. Since

5Since at late times λI(t) → λI0 and RI0(t) → +∞, the left-boundary of the plateau of the effective

potential of lnRIj ends by being negative. This means that RIj may freeze at some value below one. In

such a case, a T-duality RIj → 1/RIj to a type I’ description is more suitable. In general, a mixed type I /

type I’ theory may be obtained, in order to keep all internal radii larger than one.
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this yields RIi =
√
λI0 � 1, the model is better described in the T-dual type I’ picture.

However, the dynamics in the intermediate regime eφ
(D)
I ' 1 for D ≥ 7 (or eφ

(D)
I �/ 1 for

D ≤ 6) cannot be inferred from these arguments.
Finally, for D ≤ 5, additional non-perturbative states may play a role in the cosmo-

logical evolution. In fact, D5-branes of the type I theory (or NS5-branes in the heterotic
context) can wrap the internal manifold in analogy with the D-strings we have considered.6

It would be interesting to study their effects on the dynamics, which may lead eventually
to a stabilization of the dilaton.

4 E1-instanton corrections

We have found that non-perturbative states contribute to the type I free energy density.
In the literature, corrections to the low energy effective action are often considered from
another point of view, namely instantons and their stringy generalizations. For instance,
E1 contributions to holomorphic couplings have been analyzed in supersymmetric cases
by heterotic/type I duality [50, 51]. In the present section, our aim is to reexamine the
type I free energy from the point of view of E1-instantons and single out the configura-
tions responsible for the stabilization of internal radii. In this non-supersymmetric case,
we want to predict the E1 corrections in type I from dual heterotic worldsheet instantons.
For simplicity, we restrict our analysis to the case D = 9, where instantons wrap the Eu-
clidean time circle and the direction 9. This is to be contrasted with the zero temperature
case where E1 corrections would only arise for D ≤ 8. We note that by a double Wick
rotation, the results in this section may be interpreted as the zero temperature vacuum
energy contribution of E1-instantons wrapping an internal T 2, with spontaneous super-
symmetry breaking boundary conditions along one of the toroidal directions. In this case,
the temperature scale T is replaced with the supersymmetry breaking scale M .

Our starting point is the heterotic model of section 3. To help exhibit the worldsheet
instanton structure of the one-loop amplitude Zh, we work in the Lagrangian formulation
of the zero modes lattice associated to S1(Rh0) × S1(Rh9) (see eqs. (A.10) and (A.11)).

We consider Rh9 ≥ 1 and parameterize the zero modes by the matrix M =
(n0 m̃0

n9 m̃9

)
. The

case Rh9 ≤ 1 may be obtained by T-duality. We may decompose the lattice sum under
orbits of the SL(2,Z) modular group as follows. For any set of modular covariant functions
fM(τ, τ̄) such that fM(M(τ),M(τ̄)) = fMM (τ, τ̄), for all M ∈ SL(2,Z), one has∫
F

d2τ

τ2
2

∑
M

fM(τ, τ̄) =
∫
F

d2τ

τ2
2

f(0 0

0 0

)(τ, τ̄)

+
∫
S+

d2τ

τ2
2

∑
m̃0,m̃9

′
f(0 m̃0

0 m̃9

)(τ, τ̄) +
∫

C+

d2τ

τ2
2

2
∑

m̃0 6=0
n9>m̃9≥0

f( 0 m̃0
n9 m̃9

)(τ, τ̄).
(4.1)

This is easily shown by applying eq. (A.6) twice: First to the sum over (n0, m̃0) and then
to the sum over (n9, m̃9). The integral over the upper half plane C+ is obtained for n9 > 0

6Note that these states may contribute even for D = 5. This is to be contrasted with 5-brane instantons

at zero temperature, which require an internal space of six dimensions.
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by writing m̃9 = kn9 + l (0 ≤ l < n9 − 1) and changing τ → τ + k. The integral over F
corresponds to the zero orbit (i.e.M = 0), while the integral over S+ corresponds to non-
vanishing degenerate matrices (i.e.with detM = 0). The last integral over C+ is associated
to non-degenerate matrices.

Applying (4.1) to the heterotic partition function Zh, the contribution of the zero orbit
vanishes due to supersymmetry, so that7

Zh = Zdh + Zndh

Zdh =
β̂hV̂h

(2π)9

∫
S+

d2τ

2τ6
2

Γ(0,16)

η8η̄24
R9

∑
m̃0,m̃9

′
e
−πRh0

τ2
m̃2

0 e
−πRh9

τ2
m̃2

9

[
V8 − (−1)m̃0S8

]
(4.2)

Zndh =
β̂hV̂h

(2π)9

∫
C+

d2τ

2τ6
2

Γ(0,16)

η8η̄24
R9 2

∑
m̃0 6=0

n9>m̃9≥0

e
−πRh0

τ2
m̃2

0 e
−πRh9

τ2
|n9τ+m̃9|2

[
V8 − (−1)m̃0S8

]
.

Performing the τ -integrations, the degenerate part Zdh can be brought into the form

Zdh =
β̂hV̂h

β̂9
h

{
s0b0 c9 +

∑
A≥0,m9

′
sAbAG

(
2πRh0

[
4A+

( m9

Rh9

)2] 1
2

)}
, (4.3)

while the non-degenerate contribution Zndh can be written as,

Zndh =
β̂hV̂h

β̂9
h

2
∑

A≥0, Ā≥−1
n9>m̃9≥0

sAbĀ
e−2iπ

m̃9
n9 (A−Ā)

n9
G

(
2πRh0

[
4A+

(A− Ā
n9Rh9

− n9Rh9

)2] 1
2

)
. (4.4)

Summing over m̃9 in (4.4) enforces the level matching condition A − Ā = n9m9 for some
integer m9, whenever n9 6= 0. The “missing term” for n9 = 0 is actually the contribution
of the degenerate orbits Zdh . In total, Zdh +Zndh yields with no surprise the expression (3.1),
which can be analytically continued in the range 1 ≤ Rh9 ≤

√
2. However, to exhibit the

instantonic structure, it is better to leave the sum over m̃9.
In Zdh , only pure Kaluza-Klein modes along the directions 9 and 0 contribute and

the worldsheet embedding in the target torus is trivial (no instanton number). Therefore,
these states do not play a role in stabilizing the internal circle. In order to extract the
configurations in Zndh responsible for fixing Rh9 at the self-dual point, we know it is enough
to focus on the dominant contributions in the low temperature expansion. The terms
with A ≥ 1 are exponentially suppressed, O(e−4πRh0), compared to the contribution with
A = 0. The latter arises from BPS configurations and, at this level of approximation, Zndh

in eq. (4.2) involves a purely antiholomorphic function, B(τ̄) = Γ(0,16)/η̄
24, dressed by an

7The use of eq. (4.1) is valid if the argument of the discrete sum to integrate is absolutely convergent.

In the present case, since the right-moving block Γ(0,16)/η̄
24 and the left-moving O8/η

8 character involve

diverging powers of e2πτ2 in the limit τ2 → +∞, eq. (4.1) can be trusted if Rh0 >
√

3 and Rh9 >
√

2. The

first condition is not problematic as we are focussing on the dynamics at low temperature. Since we are

interested in the stabilization of Rh9 around 1, the second condition could be a problem. However, we see

shortly that the final expression (4.4) can be analytically continued all the way to Rh9 = 1.
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inverse power of τ2 and the lattice of zero modes associated to the directions 0 and 9. This
form is similar to the one encountered in the evaluation of holomorphic couplings, when
supersymmetry is unbroken [50, 51].

We can now define instanton configurations, with associated Kähler and complex struc-
ture moduli Υ and Y as,

Instanton with n9 > m̃9 ≥ 0 , k̃0 ≥ 0 :

Υ = iΥ2 = i(2k̃0 + 1)Rh0 · n9Rh9

Y = Y1 + iY2 =
m̃9

n9
+ i

(2k̃0 + 1)Rh0

n9Rh9

, (4.5)

where (2k̃0+1)n9 is the instanton number, which counts the number of times the worldsheet
wraps around the target torus. Using these notations and introducing coefficients αn ∈ N
in the expansion of the Bessel function8 in (2.2), K 9

2
(x) =

√
π/(2x)e−x

∑4
n=0 αn/x

n, we
may write (4.4) as

Zndh =
V̂

(10)
h

(2π)10
2
∑

instantons

s0
e2iπΥ

Υ2 Y4
2

4∑
n=0

 αn
(2πΥ2)n

∑
Ā≥−1

bĀ

(
1 + Ā

Y2

Υ2

)4−n
e2iπYĀ


+c.c.+O(e−4πRh0), (4.6)

where V̂ (10)
h is the ten-dimensional Euclidean volume. This result can be given a more

elegant appearance by noting that B(Y) is a modular form of weight 4. Introducing the
modular covariant derivative DX = (∂Y + ir

2Y2
)X , where X (Y) is any modular form of

weight r,9 the brackets in (4.6) become 1/(πΥ2)n
∑n

m=0 γnm(iY2)mDmB(Y), where γnm
are rational numbers.

The above expression of Zndh contains far too many explicit terms needed to study the
stabilization of Rh9. In (4.4), the dominant contribution for A = 0 arises when Ā = −1 and
n9 = 1, while the remaining terms are exponentially suppressed, O(e−2πRh0). Restricting
to Ā = −1 and the instanton configurations n9 = 1, m̃9 = 0, k̃0 ≥ 0 in Zndh , we can add
the degenerate contribution Zdh = (β̂hV̂h/β̂

9
h) s0b0 c9 + O(e−2πRh0) to recover the first line

of eq. (3.1) required for the derivation of the stabilization of Rh9.
We now wish to interpret eq. (4.6) from the perspective of the type I superstring.

Under the heterotic/type I dictionary (3.2), the complex and Kähler structures Y and Υ
are mapped into YI and ΥI/λI. Consequently, the exponential factor of Υ in (4.6) yields
the exponential of the Nambu-Goto action for a D-string, and Zndh translates into a sum
of E1 instantons as in [50, 51],

ZE1
I =

V̂
(10)

I

(2π)10
2

∑
E1 instantons

s0
e

2iπ
λI

ΥI

ΥI2 Y4
I2

4∑
n=0

 αn
(2πΥI2)n

∑
Ā≥−1

bĀ

(
1
λI

+ Ā
YI2

ΥI2

)4−n
e2iπYIĀ


+c.c.+O(e

−4π
RI0√
λI ). (4.7)

8In any odd dimension, the Bessel function admits a power series with a finite number of terms.
9This means that X (Y + 1) = X (Y) and X (−1/Y) = X (Y)/Yr. Moreover, DX is a modular form of

weight r − 2.
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Actually, the configurations of the D-string worldsheets wrapped on S1(RI0)×S1(RI9) are
highly dissymmetric at late times in the sense that RI0(t)→ +∞ and RI9(t) ∼

√
λI(t)→√

λI0. However, this does not mean it is artificial to consider such E1-instantons. In-
stead, they open the possibility to derive from a pure type I point of view the free energy
responsible for the stabilization of the internal moduli (or the effective potential at zero
temperature when at least two internal directions are compactified and supersymmetry is
spontaneously broken). Thus, it would be interesting to derive D-brane instanton correc-
tions from first principles, in the case where supersymmetry is spontaneously broken. The
full instantonic structure of (4.4) should also be interpreted from a type I point of view,
even when all contributions with A ≥ 0 and Ā ≥ −1 are kept explicitly.

5 Heterotic and dual type I moduli stabilization

We would like to extend the analysis used in section 3 to include the remaining moduli in
addition to the internal radii. We consider the heterotic string compactified on T 10−D at
a generic point in moduli space and show that when finite temperature is switched on, the
free energy density can stabilize all internal moduli. Our study is based on the effective
action at finite temperature and weak coupling for the massless degrees of freedom, while
all massive states are integrated out. Introducing simplified notations, we are interested
in non-trivial backgrounds for the Einstein frame metric g, the dilaton φ in D dimensions
and all real-valued internal moduli ΦM , which we denote collectively as ~Φ. Concretely, ~Φ
contains the components of the metric ĝij and antisymmetric tensor Bij , together with the
Wilson lines Y I

i (i, j = D, . . . , 9; I = 10, 11, . . . , 25). It is then straightforward to deduce
the dynamics and final expectation values of the type I counterparts of these scalars by
using the duality map

ĝij =
ĝIij

λI
, Bij = Cij , Y I

i = Y I
Ii , (5.1)

where Cij is the RR 2-form. Detailed examples of this analysis will be given in section 6
for D = 8.

The heterotic low energy effective action

S =
∫
dDx
√
−g
[
R

2
− 2
D − 2

∂µφ∂
µφ− 1

2
FMN∂µΦM∂µΦN −F

]
(5.2)

involves the tree level moduli space metric FMN = FMN (~Φ) and the one-loop free energy
density F = F(T, φ, ~Φ). Since the backreaction of F on the classical background is already
a one-loop effect, there is no need to take into account the quantum corrections to the
kinetic terms. For homogeneous and isotropic evolutions, variation of S with respect to the
time-dependent metric (3.3), dilaton and moduli ΦM yields, in cosmological time defined
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by dt ≡ β(x0)dx0,

(D − 1)(D − 2)
2

H2 =
2

D − 2
φ̇2 +

1
2
FMN Φ̇M Φ̇N + ρ, (5.3)

(D − 1)(D − 2)
2

H2 + (D − 2)Ḣ +
2

D − 2
φ̇2 +

1
2
FMN Φ̇M Φ̇N + P = 0, (5.4)

φ̈+ (D − 1)Hφ̇+
D − 2

4
Fφ = 0, (5.5)

Φ̈M + (D − 1)HΦ̇M + FMN
(
FNPQ −

1
2
FPQN

)
Φ̇P Φ̇Q + FMNFN = 0. (5.6)

In these equations, H = ȧ/a and the thermal pressure and energy density are found to be

P = −F , ρ = T
∂P

∂T
− P. (5.7)

Additional indices φ and N denote partial derivatives with respect to φ and ΦN , while
FMN ≡ (F−1)MN . It is convenient to replace eq. (5.4) by the constant entropy constraint.
The latter is found by integrating the energy-momentum tensor conservation law derived
from the above differential system (see [31]),

ρ̇+ (D − 1)H(ρ+ P ) = φ̇Fφ + Φ̇MFM =⇒ aD−1 ρ+ P

T
= constant entropy. (5.8)

In order to find particular evolutions characterized by static moduli,
(
φ(t), ~Φ(t)

)
≡

(φ0, ~Φ0), we need to specify F . For any supersymmetric spectrum, the one-loop free energy
density is

F=−e
2D
D−2

φ
∫ +∞

0

dl

2l
1

(2πl)
D
2

∑
s

e−
M̂2
s l

2

∑
m̃0

e
−β̂2m̃2

0
2l

(
1− (−)m̃0

)
=−TD

∑
s

G

(
e

2
D−2

φM̂s

T

)
,

(5.9)
where M̂s is the mass of each boson/fermion pair s, and the dilaton dressing in front of
the integral is introduced to switch from string to Einstein frame. This general expression
applied to our case of interest, namely the heterotic string on T 10−D, is explicitly derived
from a one-loop vacuum-to-vacuum amplitude in the appendix. In the notations introduced
there, s0r0 = 28 × 24 boson/fermion pairs of states are massless everywhere in moduli
space,10 while the other modes have moduli-dependent masses, M̂s(~Φ). Since light states
have the tendency to lower F , effective potential wells can be found at any point ~Φ0

where n0 > 0 pairs of modes generically massive are accidentally massless, M̂u(~Φ0) = 0,
u = 1, . . . , n0. The fact that we have at zero temperature 16 real conserved supercharges
implies that such points are associated to enhancements of the gauge symmetry. Defining
M̂min to be the lightest non-vanishing mass at ~Φ0, the free energy density can be written
in a neighborhood of ~Φ0 as,

F = −TD
{
s0r0 +

n0∑
u=1

G

(
e

2
D−2

φM̂u(~Φ)
T

)
+O

(
e−

M̂min
T̂

)}
. (5.10)

10They are associated to the supergravity and super-vector multiplets of the SO(32) Cartan generators.
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At low enough temperature, the exponentially suppressed terms can be neglected and we
may derive identities for the thermal source terms at ~Φ0, including the equation of state,

F|~Φ0
=−TD(s0r0 + n0) cD , Fφ|~Φ0

=0 , FM |~Φ0
= 0 , ρ|~Φ0

=(D − 1)P |~Φ0
∝ TD. (5.11)

It is then straightforward to check that the evolutions

a0(t) ∝ 1
T0(t)

∝ t2/D , φ(t) ≡ φ0 , ~Φ(t) ≡ ~Φ0 , (5.12)

corresponding to radiation eras with static moduli are particular solutions of the equations
of motion.

The above trajectories are actually attractors of the dynamics in some circumstances.
To study this, we analyze their stability under small time-dependent deviations,

a = a0(1 + εa) , T = T0(1 + εT ) , φ = φ0 + εφ , ΦM = ΦM
0 + εM . (5.13)

We first perturb the internal moduli equation (5.6). Denoting H0 = ȧ0/a0, one obtains at
lowest order,

ε̈M + (D − 1)H0 ε̇
M + ΛMN εN = 0 where ΛMN ≡ FML|~Φ0

FLN |(T0,φ0,~Φ0). (5.14)

ΛMN is an effective “time-dependant squared mass matrix” evaluated for the back-
ground (5.12). Since

FMN |~Φ0
= TD−2 e

4φ
D−2

cD−2

4π

n0∑
u=1

∂2M̂2
u

∂ΦM∂ΦN

∣∣∣∣∣
~Φ0

(5.15)

is semi-definite positive, ΛMN is diagonalizable with non-negative eigenvalues,11 which we
define as 4λ2

M

D2t2(D−2)/D . In the case when some λM ’s vanish, one needs to take into account
quadratic terms in eq. (5.14) (see the discussion of the dilaton equation below). In par-
ticular, this is required when moduli sit on the plateau of their thermal effective potential
(see figure 1). For simplicity, we proceed by analyzing the most interesting case, where
all internal moduli are “massive”, which means λM > 0. Switching to a diagonal basis of
perturbations ε̃M , one obtains from (5.14)

ε̃M =
t1/D√
t

[
CM+ JD−2

4
(λM t2/D) + CM− J−D−2

4
(λM t2/D)

]
, (5.16)

where CM± are integration constants and J±D−2
4

are Bessel functions of the first kind.12

This describes damped oscillations with amplitude of order 1/
√
t, where t is supposed to

be large enough so that |ε̃M | � 1 is satisfied.
11This follows from the fact that the matrices F−1/2 and F are (semi-)definite positive, so that

F−1/2FF−1/2 = F 1/2ΛF−1/2 is semi-definite positive. Note that in models where the spontaneous breaking

of supersymmetry is generic i.e.not only due to thermal effects, each term in the sum over the boson-fermion

pair u in eq. (5.15) is dressed with a + (or −) sign when the boson (fermion) is lighter than the fermion

(boson). In such cases, F is not semi-definite positive and the extrema of F can be minima, maxima or

saddle points.
12For D = 6, J−1 should be replaced by the Bessel function of the second kind, Y−1.
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Next, we derive from (5.5) the equation for the dilaton perturbation at leading order,

(aD−1
0 ε̇φ)˙+aD−1

0

1
2
FφMN |(T0,φ0,~Φ0)ε

M εN = 0 where FφMN |~Φ0
≡ 4
D−2

FMN |~Φ0
. (5.17)

Since the constants CM± are a priori of order one, we take into account the quadratic source
in “massive” epsilons. Thus, ε̇φ can be written as the sum of the general solution to its
homogeneous equation, plus a particular solution to eq. (5.17). The former is of order
1/aD−1

0 and turns out to be dominated at late times by the latter. Actually, using (5.16),
the quadratic source term involves products of Bessel functions with arguments λP t2/D

and λQ t2/D. Integrating it once, the dominant contribution to aD−1
0 ε̇φ is found to arise for

“constructive interferences”, i.e.when λP = λQ. This yields the asymptotic behavior,

ε̇φ ∼ −
Cφ

aD−2
0

=⇒ εφ ∝
1

t1−4/D
for D ≥ 5 and εφ ∝ ln t for D = 4, (5.18)

where Cφ is a fully determined coefficient quadratic in CM± ’s and positive. For D ≥ 5, the
consistency condition |εφ| � 1 is automatically fulfilled at late times. On the contrary,
the case D = 4 yields formally to a logarithmically decreasing εφ and one may worry that
the our expansions breaks down. Therefore, we have solved numerically the full non-linear
differential system (5.3)–(5.6) in this case and found that the perturbative analysis gives
the correct late time behavior, which we summarize at the end of this section.

To analyze the evolution of the scale factor and temperature fluctuations, we expand
the energy density and pressure around the background (5.12) and find from Friedmann’s
equation (5.3) and (5.8),

(D − 1)(D − 2)H0 ε̇a =
1
2
FMN |~Φ0

ε̇M ε̇N +Dρ|(T0,φ0,~Φ0)εT −
D − 3

2
FMN |(T0,φ0,~Φ0)ε

M εN ,

(5.19)

D(εa + εT ) ρ|(T0,φ0,~Φ0) =
D − 2

2
FMN |(T0,φ0,~Φ0)ε

M εN . (5.20)

It is then straightforward to solve for εa, whose asymptotic behavior is again dictated by
the source terms in “constructive interferences” arising from the products ε̇M ε̇N and εM εN

in (5.19) and (5.20). The late time scaling property of εa is found to be

εa ∝
a2

0

t
∝ 1
t1−4/D

, (5.21)

which can be used in eq. (5.20) to find

εT ∝
a2

0

t
(1 + oscillations with constant amplitude). (5.22)

In (5.21) and (5.22), the coefficients of proportionality are again fully expressed in terms
of the CM± ’s.

We signal that for D ≥ 5, all terms we have neglected in the perturbed equations
of motion are a posteriori found to be dominated by the sources we took into account.
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This guarantees the validity of the asymptotic behaviors we have found for the deviations
defined in (5.13). These results have been confirmed by direct numerical analysis of the
unperturbed system of differential equations in some examples. Since all fluctuations con-
verge to zero, the late time cosmology is radiation dominated. In particular, the dilaton
motion and the damped oscillations of ε̃M store a negligible amount of energy as compared
to the thermal radiation energy. The internal moduli are dynamically stabilized and their

effective time-dependent masses (measured in Einstein frame) are MΦ̃M ∝ T
D−2

2
0 e

2φ0
D−2 .

For D = 4, the numerical simulations show that the internal moduli converge to ~Φ0,
while the dilaton decreases logarithmically with time. Individually, the energy stored in
the dilaton motion, the total energy (kinetic plus potential) of the damped oscillations of
~Φ, and the thermal radiation energy decay at the same rate. Their late time behavior
satisfies

H2 ∝ φ̇2 ∝
(

1
2
FMN Φ̇M Φ̇N + ρ

)
∝ 1
a4
, (5.23)

so that the metric evolution is identical to that of a radiation dominated universe, a ∝
√
t.

The above logarithmic behavior of the heterotic dilaton is transferred by heterotic/type
I duality to the type I dilaton for D = 4. Moreover, in any dimension, stabilization of the
internal moduli on the heterotic side implies stabilization of internal moduli on the type I
side, except for the special case of D = 6, where S-duality exchanges the six-dimensional
heterotic coupling with the type I internal volume modulus.

6 Example: dual heterotic/type I strings on T 2

Our aim is to illustrate the analysis of the previous section with examples for D = 8. We
want to find local attractor solutions of the form (5.12) associated to enhanced symmetry
points ~Φ0 of the internal moduli space of the heterotic string on T 2. We shall see that the
one-loop free energy density has enough structure to stabilize T = B89 + i

√
ĝ88ĝ99 − ĝ2

89,
U =

(
ĝ89 + i

√
ĝ88ĝ99 − ĝ2

89

)
/ĝ88 and the Wilson lines Y I

i (i, j = 8, 9; I = 10, 11, . . . , 25).
This translates in the type I side into expectation values of the closed and open string
internal moduli via the duality map T = TI, U = UI, Y I

i = Y I
Ii , where

TI = C89 + i

√
ĝI88ĝI99 − ĝ2

I89

λI
= C89 + ie−φI

(
ĝI88ĝI99 − ĝ2

I89

)1/4
2π

,

UI =
ĝI89 + i

√
ĝI88ĝI99 − ĝ2

I89

ĝI88
. (6.1)

The only remaining flat direction of the thermal effective potential corresponds to the
heterotic and type I dilatons in eight dimensions, which are related as: φI = −1

2φ −
3
4 ln

(
(2π)2

√
ĝ88ĝ99 − ĝ2

89

)
.
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The heterotic effective action in the Einstein frame is (see for instance appendices D
and E in [56])

S=
∫
d8x
√
−g

{[
R

2
− (∂φ)2

3
− 1

4

(
|∂U|2

U2
2

+
|∂T + Y I

[8∂Y
I

9]|
2

T 2
2

+
|U∂Y I

8 − ∂Y I
9 |2

T2 U2

)]
−F

}
.

(6.2)
Indeed, if we arrange the thirty-four entries of the moduli vector as ~Φ ≡
(T1, T2,U1,U2, Y

I
8 , Y

I′
9 ), where indices 1 and 2 refer to real and imaginary parts, the metric

components of the general expression (5.2) are

(FMN ) =



1
2T 2

2
0 0 0 − Y J9

4T 2
2

Y J
′

8

4T 2
2

1
2T 2

2
0 0 0 0
1

2U2
2

0 0 0
1

2U2
2

0 0

sym. |U|2
2T2U2

δIJ + Y I9 Y
J
9

8T 2
2
− U1

2T2U2
δIJ

′ − Y I9 Y
J′
8

8T 2
2

1
2T2U2

δI
′J ′ + Y I

′
8 Y J

′
8

8T 2
2


. (6.3)

The free energy density F is determined by the mass spectrum (see eq. (5.9)), which is
specified by the left (right)-moving oscillator number A (Ā), the internal momenta and
winding numbers mi, ni (i = 8, 9), and the root vector QI of the right-moving internal
lattice ΓSpin(32)/Z2

. As reviewed in the appendix, the mass formula M̂2
s = 2(A + Ā) +

1
2

(
~p2
L + ~p2

R

)
involves the left and right-moving momenta along the compact directions,

pIL,R =
(
mi−QJY J

i −njBij−
1
2
njY J

i Y
J
j

)
e∗iI ∓ nieIi for i, j, I=8, . . . , 9; J=10, . . . , 25,

pIR =
√

2
(
QI + niY I

i

)
for I=10, . . . , 25; ~Q ∈ ΓSpin(32)/Z, (6.4)

where ĝij = eIi e
I
j and e∗iIeIj = δij . More explicitly, one obtains

M̂2
A,~m,~n, ~Q

(T ,U , Y ) =
1
T2U2

∣∣∣∣−m8U +m9 + T̃ n8 +
(
T̃ U − 1

2
WIWI

)
n9 +WIQI

∣∣∣∣2 + 4A,

(6.5)
where we have defined

WI := UY I
8 − Y I

9 , T̃ := T +
1
2
Y I

8WI (6.6)

and used the level matching condition, A − Ā = min
i + 1

2Q
IQI . At generic points in

moduli space, the gauge symmetry is U(1)2
L×U(1)2

R×U(1)16
R , where U(1)2

L×U(1)2
R arises

from T 2 compactification, and U(1)16
R is the Cartan subgroup of SO(32)R. We now examine

special points in moduli space where n0 pairs of bosonic and fermionic superpartners gener-
ically massive are accidentally massless. Since at zero temperature the model is maximally
supersymmetric, such points are associated to enhanced gauge symmetries. In fact, the ad-
ditional massless modes arise at oscillator levels A = 0, Ā = −1, so that n0 is proportional
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to s0r−1 = 23 (see the appendix) and the enhancements of the gauge theory arise from the
right-moving sector only. In the following two examples, we will simplify the notations by
omitting the subscript “R” in the right-moving gauge group factors.

Local attractor 1: U(1)2L×SU(3)×SO(32). We start with the most obvious attractor
where all Wilson lines vanish, Y I

i = 0, leaving the SO(32) group unbroken. The torus
moduli take the values T = U = 1

2 + i
√

3
2 , implying an additional SU(3) gauge factor. The

n0 states responsible for the enhancement of U(1)2×U(1)16 → SU(3)×SO(32) are divided
into two groups:

• 6 × 23 boson/fermion pairs imply U(1)2 → SU(3). Their quantum numbers are
(~m,~n) = ±(1, 1; 0, 1), ±(0, 1;−1, 1) or ±(1, 0; 1, 0), and ~Q = 0. In this case, p8,9

L =
0 = pI≥10

R and (p8
R, p

9
R) realize the root vectors of SU(3), which represent a hexagon.

The corresponding 6 mass formulas are,

M̂2
0, ~m,~n,~0

=


1
T2U2
|1− U + T̃ U − 1

2W
IWI |2 for (~m,~n) = ±(1, 1, 0, 1),

1
T2U2
|1− T̃ + T̃ U − 1

2W
IWI |2 for (~m,~n) = ±(0, 1,−1, 1),

1
T2U2
|T̃ − U|2 for (~m,~n) = ±(1, 0, 1, 0).

(6.7)

• 480×23 boson/fermion pairs to recover U(1)16 → SO(32). They have (~m,~n) = (~0,~0),
~Q = ±(1,±1, 0, . . . , 0), ±(1, 0,±1, . . . , 0) or any other permutation. In this case,
p8,9
L = 0 = p8,9

R , while (pI≥10
R ) realize the root vectors of SO(32). The corresponding

480 mass formulas are

M̂2
0,~0,~0, ~Q

=
1
T2U2

∣∣±(WI ±WJ)
∣∣2 , I, J = 10, . . . , 25 , I 6= J. (6.8)

To compute the squared mass matrix defined in eq. (5.14), we first evaluate the
second derivatives (5.15) of the free energy at ~Φ0. The non vanishing components
are proportional to

n0∑
u=1

∂2M̂2
u

∂Tα∂Tα

∣∣∣∣∣
~Φ0

=
n0∑
u=1

∂2M̂2
u

∂Uα∂Uα

∣∣∣∣∣
~Φ0

= 16× 23, α = 1, 2 (no sum over α)

n0∑
u=1

∂2M̂2
u

∂Y I
i ∂Y

I
i

∣∣∣∣∣
~Φ0

=−2
n0∑
u=1

∂2M̂2
u

∂Y I
8 ∂Y

I
9

∣∣∣∣∣
~Φ0

=160× 23, i = 8, 9; (6.9)

I=10, . . . , 25 (no sum over i, I).

The nonzero entries of the metric (6.3) at ~Φ0 are also found to be

FTαTα = FUαUα =
2
3
, α = 1, 2 (no sum over α) (6.10)

FY Ii Y Ii
=

2
3
, FY I8 Y I9

= −1
3
, i = 8, 9; I = 10, . . . , 25 (no sum over i, I).

The resulting matrix of squared masses is diagonal, with strictly positive eigenval-
ues. Therefore, all flat directions of the internal moduli space are lifted. Once the
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dynamics is attracted to the trajectory (5.12), the “time-dependent moduli squared
masses” are

M2
Φ1

=
c6

4π
23 × 24 e

2φ0
3 T 6

0 or M2
Φ2

=
c6

4π
23 × 240 e

2φ0
3 T 6

0 . (6.11)

The first one corresponds to T1, T2, U1, U2, while the second is associated to the
Wilson lines Y I

8 and Y I
9 . The additional factor of ten for the latter can be understood

from the fact that they are coupled to ten times as many additional states as compared
to the torus moduli.

Local attractor 2: U(1)2L × SU(2) × SO(34). The point ~Φ0 we now consider cor-
responds to the values T = U = i/

√
2, Y I≥10

8 = 0 and Y 10
9 = −Y 11

9 = −Y 12
9 = · · · =

−Y 25
9 = −1/2. This moduli configuration is much less trivial than the previous one, since

it is going to give rise to the gauge group SU(2)8 × SO(34)9,...,25, where the subscripts
denote which directions i = 8, 9 and I = 10, . . . , 25 are associated with the gauge factors.
There are n0 = 546×23 extra massless boson/fermion pairs of states, which can be divided
into 2× 23 for the SU(2)8 and 544× 23 for the SO(34)9,...,25 enhancements. Note that the
SO(34)9,...,25 factor arises from an enhancement of the U(1)9 symmetry of the T 2 torus,
with the SO(32) symmetry of the internal lattice. The detailed quantum numbers of the
extra states are as follows:

• 2 × 23 boson/fermion pairs give U(1)8 → SU(2)8. They have (~m,~n) = ±(1, 0; 1, 0)
and ~Q = 0. In this case, pI≥8

L = 0 = pJ≥9
R , while p8

R = ±
√

2 realize the root vectors
of SU(2)8.

For SO(34)9,...,25, the 544 × 23 pairs of bosons and fermions giving U(1)17
9,...,25 →

SO(34)9,...,25 are subdivided into:

• 420 × 23 pairs transform in the adjoint representation of SO(30) and are giving rise
to U(1)15

11,...,25 → SO(30)11,...,25. 210× 23 have (~m,~n, ~Q) = ±(0, 1; 0, 0; 0, 1, 1, 0, . . . , 0)
or any permutation of the last 15 entries. The other 210 × 23 have (~m,~n, ~Q) =
(0, 0; 0, 0; 0, 1,−1, 0, . . . , 0) or any permutation of the last 15 entries.

• 60×23 pairs transform as (2, 30) under SO(2)10×SO(30)11,...,25, giving the enhanced
group SO(32)10,...,25. 30 × 23 of them have (~m,~n, ~Q) = ±(0, 1; 0, 0;−1, 1, 0, . . . , 0)
or any permutation of the last 15 entries. The other 30 × 23 have (~m,~n, ~Q) =
±(0, 0; 0, 0; 1, 1, 0, . . . , 0) or any permutation of the last 15 entries.

• 64× 23 pairs transform as (2, 32) under SO(2)9 × SO(32)10,...25, giving the enhanced
gauge group SO(34)9,...,25. 32×23 of them have (~m,~n, ~Q) = ±(0, 1; 0,−1; 1

2 , . . . ,
1
2) and

±(0, 1; 0,−1;−1
2 ,−

1
2 ,

1
2 , . . . ,

1
2) or any permutation of the last 15 entries. The other

32×23 have (~m,~n, ~Q) = ±(0, 2; 0,−1;−3
2 ,

1
2 , . . . ,

1
2) and ±(0, 2; 0,−1;−1

2 ,
3
2 ,

1
2 , . . . ,

1
2)

or any permutation of the last 15 entries.

Proceeding as before, the squared mass matrix in (5.14) can be evaluated. Its diago-
nalization reveals two groups of eigenvalues,

M2
Φ̃1

=
c6

4π
23 × 16 e

2φ0
3 T 6

0 , M2
Φ̃2

=
c6

4π
23 × 256 e

2φ0
3 T 6

0 . (6.12)
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The first one is associated to T1−U1− 1
4(Y 10

8 −Y 11
8 −· · ·−Y 25

8 ) and T2−U2, while the second
corresponds to T1 + U1, T2 + U2 and all 32 Wilson lines. Thus, we find a second point in
moduli space where all internal moduli are stabilized by the thermal effective potential.13

7 Conclusions and perspectives

In this paper, we considered toroidally compactified heterotic and type I superstrings at
finite temperature. Applying the rules of heterotic/type I duality, we inferred novel con-
tributions to the free energy of a gas of type I superstrings. These contributions are due
to BPS D-strings wrapped on internal circles which become massless at special points in
moduli space, enhance the gauge group, and lift flat directions. These conclusions are
based on the S-dual heterotic picture at weak coupling. At finite temperature, the latter is
a no-scale model i.e.a flat background where all supersymmetries are spontaneously broken
at tree level.

We computed the one-loop free energy density on the heterotic side for D ≥ 4 and
found points in moduli space where all internal moduli are dynamically stabilized due to
the cosmological evolution. Additionally, in D ≥ 5, the evolution of the dilaton asymptotes
to a constant value, while in D = 4, the dilaton turns out to have a logarithmically
decreasing behavior.

Using the S-duality, this implies that for D ≥ 7, all type I internal moduli can be
stabilized at strong coupling. In D = 6, the S-duality maps the heterotic coupling into
the type I volume modulus. As a result the only remaining flat direction in type I is the
internal volume modulus, which asymptotes to a constant finite value, while the type I
dilaton is stabilized at weak coupling. For the cases D ≤ 5, all type I internal moduli
can be stabilized at weak coupling. Furthermore in D = 4, the type I dilaton inherits
the logarithmic behavior from the heterotic dilaton, while it asymptotes to a constant in
higher dimensions. In all cases, the late time geometric evolution is identical to a radiation
dominated evolution. Furthermore, all solutions are stable under small perturbations and
are thus local attractors of the dynamics.

It is worth stressing that the effects of the massless BPS non-perturbative D-strings
persist at weak coupling, as their masses are protected by supersymmetry. As a result,
the stabilization in type I for D ≥ 7 persists at weak coupling. Furthermore, taking these
modes into account is not optional in phenomenologically motivated uses of the type I
superstring. Actually, this is not the first time massless solitons play an essential role
in weakly coupled theories. For instance, in type IIB compactifications on Calabi-Yau
threefolds, the conifold singularities in the vector multiplets moduli spaces are explained
by massless hypermultiplets realized by D3-branes wrapped on vanishing 3-cycles [57].

Realistic models should include also a spontaneous breaking of N4 = 1 supersymmetry
at a scale M , before finite temperature T is switched on. In this case, the universe is
attracted to a “radiation-like dominated era” [25–32]. This evolution is characterized by

13We have also investigated a third local attractor at the point T = U = i/2, Y I≥10
8 = 0 = Y 10,11

9 ,

Y 12,...,25
9 = 1/2, which corresponds to the gauge enhancement SU(2)× SU(2)× SO(32) and a stabilization

of all internal moduli. Due to its similarity, we do not present its details here.
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coherent motions of e4φ(t) (where φ is the dilaton in four dimensions) and the modulusM(t),
both proportional to T (t) such that Friedmann’s equation is effectively that of a radiation
dominated era, H2 ∝ T 4. The energy stored in the oscillations of the moduli around their
minima is found to be dominated by the thermal energy and so the stabilization of the
scalars is guaranteed. Moreover, infrared effects are expected to put a halt to the run away
behavior of the string coupling and supersymmetry breaking scale. In particular, when
T (t) reaches the electroweak scale MEW, radiative corrections are not screened anymore by
temperature effects and the electroweak breaking is expected to take place [58–63]. This
should be accompanied by the stabilization of M(t) around MEW [64]. Clearly, it is of
utmost importance to implement these effects in our cosmological set up since this would
provide a precise context for addressing questions of dark matter, astroparticle physics
and phenomenology. Additionally for D = 4, as well as D = 5, there is the possibility of
large contributions coming from light NS5-brane states in the heterotic theory or D5-brane
states in the type I theory which have not been taken into account yet. It is possible that
these states can play a role in stabilizing the dilaton. To make progress in this direction,
one may try to exploit heterotic/type II duality in D = 4 which is a strong-weak duality.

Acknowledgments

We are grateful to C. Bachas, E. Dudas, I. Florakis, C. Kounnas, A. Sagnotti and N.
Toumbas for useful discussions. H.P. would like to thank C.E.R.N. where part of this work
was completed.

J.E. acknowledges financial support from the Groupement d’Intérêt Scientifique P2I,
as well as support by the FWO - Vlaanderen, Project No. G.0235.05, and by the “Federal
Office for Scientific, Technical and Cultural Affairs through the Interuniversity Attrac-
tion Poles Programme Belgian Science Policy” P6/11-P. The work of L.L. and H.P. is
partially supported by the contracts PITN GA-2009-237920, ERC-AG-226371, ANR 05-
BLAN-NT09-573739 and PICS France/Greece, France/USA.

A Thermal partition functions

Type I superstring. To study the canonical ensemble of a perfect gas of maximally
supersymmetric open and closed superstrings, we compactify the type I theory on the
Euclidean background S1(RI0) × TD−1 ×

∏9
i=D S

1(RIi). Bosons (fermions) are imposed
periodic (antiperiodic) boundary conditions along S1(RI0), where β̂I = 2πRI0 is the inverse
temperature. The spatial torus TD−1 is considered in the large volume V̂I limit. Our
aim is to compute the one-loop thermal partition function. The treatment of a generic
Scherk-Schwarz compactification can be found in [65] and the case of present interest is
reviewed in [66].
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In the closed string sector, the torus contribution is half that of type IIB,

T =
β̂IV̂I

(2π)D
1
2

∫
F

d2τ

2τ
D
2

+1

2

1
η8η̄8

∑
~m,~n

q
1
4
~p2
L q̄

1
4
~p2
R

∑
n0,m̃0

e
−πRI0

τ2
|n0τ+m̃0|2

×1
2

∑
a,b

(−)a+b+ab θ[
a
b]4

η4

1
2

∑
ā,b̄

(−)ā+b̄+āb̄ θ̄[
ā
b̄]

4

η̄4
(−)m̃0(a+ā)+n0(b+b̄)

=
β̂IV̂I

(2π)D
1
2

∫
F

d2τ

2τ
D
2

+1

2

1
η8η̄8

∑
~m,~n

q
1
4
~p2
L q̄

1
4
~p2
R{ ∑

n0 even, m̃0

e
−πR

2
I0

τ2
|n0τ+m̃0|2

[
(V8V̄8 + S8S̄8)− (−1)m̃0(V8S̄8 + S8V̄8)

]
+

∑
n0 odd, m̃0

e
−πR

2
I0

τ2
|n0τ+m̃0|2

[
(O8Ō8 + C8C̄8)− (−1)m̃0(O8C̄8 + C8Ō8)

]}
,

(A.1)

where q = e2iπτ and pL,Ri = mi/RIi ∓ niRIi. The above second expression involves SO(8)
affine characters, where those associated to the vectorial and spinorial representations
satisfy

V8

η8
=
S8

η8
=
∑
A≥0

sA q
A. (A.2)

The Klein bottle amplitude K is obtained by keeping all characters of T which are invariant
under left ↔ right symmetry. Symmetrizing and antisymmetrizing the NS-NS and RR
sectors respectively, K involves the combination V8−S8 and is thus vanishing. In the open
string sector, the thermal annulus and Möbius strip amplitudes are

A =
β̂IV̂I

(2π)D
N2

2

∫ +∞

0

dτ2

2τ
D
2

+1

2

1
η8

∑
~m

q~p
2
∑
m̃0

e
−πR

2
I0

τ2
m̃2

0

[
V8 − (−1)m̃0S8

]
, (A.3)

M = − β̂IV̂I

(2π)D
N

2

∫ +∞

0

dτ2

2τ
D
2

+1

2

1
η̂8

∑
~m

q~p
2
∑
m̃0

e
−πR

2
I0

τ2
m̃2

0

[
V̂8 − (−1)m̃0Ŝ8

]
, (A.4)

where N = 32, q = e−πτ2 , pi = mi/RIi and the “hatted” characters in eq. (A.4) have the
power expansion

V̂8

η̂8
=
Ŝ8

η̂8
=
∑
A≥0

(−)AsA qA. (A.5)

We proceed by evaluating more explicitly the amplitude T by “unfolding” the funda-
mental domain of integration [67, 68]. In fact, for any set of modular covariant functions
f(n,m̃)(τ, τ̄) such that f(n,m̃)(M(τ),M(τ̄)) = f(n,m̃)M (τ, τ̄) for all M ∈ SL(2,Z), one has14

∫
F

d2τ

τ2
2

∑
n,m̃

f(n,m̃)(τ, τ̄) =
∫
F

d2τ

τ2
2

f(0,0)(τ, τ̄) +
∫
S+

d2τ

τ2
2

∑
m̃ 6=0

f(0,m̃)(τ, τ̄), (A.6)

14Eq. (A.6) is true as long as it is allowed to exchange discrete sum and integration, a fact which is

guaranteed if the integrand is absolutely convergent. This condition is satisfied for T when RI0 > RIH.
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where S+ is the upper half strip: −1/2 < τ1 < 1/2, τ2 > 0. Applied to eq. (A.1),
supersymmetry implies that the contribution for n0 = m̃0 = 0 vanishes and we are left
with integrals over S+ for n0 = 0, m̃0 6= 0. Defining m̃0 = 2k̃0 + 1 and using (A.2), one
obtains

T =
β̂IV̂I

(2π)D

∫
S+

d2τ

τ
D
2

+1

2

∑
k̃0, ~m, ~n
A≥0, Ā≥0

sAsĀ e
2iπτ1(A−Ā−~m·~n) e

−πR
2
I0

τ2
(2k̃0+1)2−πτ2

[
2(A+Ā)+

P
i

(
m2
i

R2
Ii

+ni
2
R2

Ii

)]

=
β̂IV̂I

(2π)D

∫ +∞

0

dτ2

τ
D
2

+1

2

∑
k̃0, ~m, ~n
A≥0, Ā≥0
A−Ā=~m·~n

sAsĀe
−πR

2
I0

τ2
(2k̃0+1)2−πτ2

[
4A+

P
i

(
mi
RIi
−niRIi

)2]
, (A.7)

where level matching is implemented by integrating over τ1. Using the formula∫∞
0 dx e

−a/x−bx

xν = 2a
1−ν

2 b
ν−1

2 Kν−1(2
√
ab), where Kν(x) is the modified Bessel function of

second kind, the integral over τ2 yields eqs. (2.1) and (2.2). Similarly, applying the expan-
sions (A.2) and (A.5) in eqs. (A.3) and (A.4), we have

A =
β̂IV̂I

(2π)D
N2

2

∫ +∞

0

dτ2

τ
D
2

+1

2

∑
k̃0, ~m,A≥0

sA e
−πR

2
I0

τ2
(2k̃0+1)2−πτ2

(P
i

m2
i

R2
Ii

+A
)
, (A.8)

M =− β̂IV̂I

(2π)D
N

2

∫ +∞

0

dτ2

τ
D
2

+1

2

∑
k̃0, ~m,A≥0

(−)AsA e
−πR

2
I0

τ2
(2k̃0+1)2−πτ2

(P
i

m2
i

R2
Ii

+A
)
, (A.9)

which gives eq. (2.3) after integration over τ2.

Dual heterotic string. We proceed by deriving the partition function of the dual het-
erotic theory, which is compactified on S1(Rh0) × TD−1 ×

∏9
i=D S

1(Rhi). Bosons and
fermions are again given periodic and antiperiodic boundary conditions along the Eu-
clidean time circle, whose circumference defines the inverse temperature β̂h = 2πRh0. This
yields

Zh =
β̂hV̂h

(2π)D

∫
F

d2τ

2τ
D
2

+1

2

Γ(0,16)

η8η̄24

∑
~m,~n

q
1
4
~p2
L q̄

1
4
~p2
R

×
∑
n0,m̃0

e
−πR

2
h0
τ2
|n0τ+m̃0|2 1

2

∑
a,b

(−)a+b+ab θ[
a
b]
η4

(−)m̃0a+n0b+m̃0n0

=
β̂hV̂h

(2π)D

∫
F

d2τ

2τ
D
2

+1

2

Γ(0,16)

η8η̄24

∑
~m,~n

q
1
4
~p2
L q̄

1
4
~p2
R

{ ∑
n0 even, m̃0

e
−πRh0

τ2
|n0τ+m̃0|2

[
V8 − (−1)m̃0S8

]

+
∑

n0 odd, m̃0

e
−πRh0

τ2
|n0τ+m̃0|2

[
(−1)m̃0O8 − C8

]}
, (A.10)

where q = e2iπτ , while pL,Ri = mi/Rhi∓niRhi and the volume V̂h are now measured in the
heterotic theory. Alternatively, the lattice of internal zero modes can be considered in its
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Lagrangian formulation, as needed in section 4 for the direction 9,∑
m9,n9

q
1
4
p2
L9 q̄

1
4
p2
R9 =

Rh9√
τ2

∑
n9,m̃9

e
−πR

2
h9
τ2
|n9τ+m̃9|. (A.11)

To unfold the fundamental domain of integration in (A.10), one can use the identity (A.6)
as in the torus amplitude in type I. Expanding the SO(32) right-moving lattice as

Γ(0,16)

η̄24
=
∑
Ā≥−1

bĀ q̄
Ā, (A.12)

and using eq. (A.2), one obtains

Zh =
β̂hV̂h

(2π)D

∫
S+

d2τ

τ
D
2

+1

2

∑
k̃0, ~m, ~n

A≥0, Ā≥−1

sAbĀ e
2iπτ1(A−Ā−~m·~n)e

−πR
2
h0
τ2

(2k̃0+1)2−πτ2
[

2(A+Ā)+
P
i

(
m2
i

R2
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+ni
2
R2
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)]

=
β̂hV̂h

(2π)D

∫ ∞
0

dτ2

τ
D
2

+1

2

∑
k̃0, ~m, ~n

A≥0, Ā≥−1
A−Ā=~m·~n

sAbĀ e
−πR

2
h0
τ2

(2k̃0+1)2−πτ2
[
4A+

P
i

(
mi
Rhi
−niRhi

)2]
, (A.13)

which can be integrated to give eqs. (3.1) and (2.2).

Heterotic string at generic point in moduli space. In sections 5 and 6 for D = 8,
we study in the context of the maximally supersymmetric heterotic string the stabilization
of all internal moduli by the free energy density at weak coupling. In Einstein frame,
the latter is F = −e

2D
D−2

φZh/(β̂hV̂h), where φ is the dilaton in dimension D and Zh is the
vacuum energy in the Euclidean background S1(Rh0)×TD−1×T 10−D. The internal moduli
are the metric ĝij , the antisymmetric tensor Bij and the Wilson lines Y I

i (i, j = D, . . . , 9;
I = 10, 11, . . . , 25). Proceeding as before, the partition function Zh takes the following
forms,

Zh =
β̂hV̂h

(2π)D

∫
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d2τ

2τ
D
2

+1

2
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~m,~n, ~Q
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4
~p2
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4
~p2
R

η8η̄24

∑
n0,m̃0

e
−πR

2
h0
τ2
|n0τ+m̃0|2 1

2

∑
a,b

(−)a+b+ab θ[
a
b]
η4

(−)m̃0a+n0b+m̃0n0

=
β̂hV̂h

(2π)D

∫
S+

d2τ

2τ
D
2

+1

2

∑
~m,~n, ~Q

q
1
4
~p2
L q̄

1
4
~p2
R

∑
k̃

e
−πR

2
h0
τ2

(2k̃0+1)2 V8 + S8

η8η̄24
(A.14)

=
β̂hV̂h

(2π)D

∫
S+

d2τ

τ
D
2

+1

2

∑
k̃0, ~m, ~n, ~Q
A≥0, Ā≥−1

sArĀ e
2iπτ1(A−Ā+ 1

4
(~p2
L−~p

2
R)) e−

πR2
h0
τ2

(2k̃0+1)2−πτ2[2(A+Ā)+ 1
2

(~p2
L+~p2

R)],

where we introduce the coefficients rĀ of the expansion η̄−24 =
∑

Ā≥−1 rĀq̄
Ā. The moduli-

dependent internal momenta are specified by ~m, ~n and the root vector QI of the right-
moving lattice ΓSpin(32)/Z2

[69, 70],

pIL,R =
(
mi−QJY J

i −njBij−
1
2
njY J

i Y
J
j

)
e∗iI ∓ nieIi for i, j, I=D, . . . , 9; J=10, . . . , 25,

pIR =
√

2
(
QI + niY I

i

)
for I = 10, . . . , 25; ~Q ∈ ΓSpin(32)/Z, (A.15)
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where {ei} is a vector basis of T 10−D i.e.ĝij = eIi e
I
j and e∗iIeIj = δij . Since these momenta

satisfy 1
2(~p2

L−~p2
R) = −2~m·~n− ~Q· ~Q, the level matching condition implemented by integrating

over τ1 in eq. (A.14) is A− Ā = ~m · ~n+ 1
2
~Q · ~Q, which yields

Zh =
β̂hV̂h

(2π)D

∫ ∞
0

dτ2

τ
D
2

+1

2

∑
k̃0, ~m, ~n, ~Q
A≥0, Ā≥−1

A−Ā=~m·~n+ 1
2
~Q·~Q

sArĀ e
−πR

2
0

τ2
(2k̃0+1)2−πτ2M̂2

A,~m,~n, ~Q
(ĝ,B,Y )

, (A.16)

where M̂2
A,~m,~n, ~Q

(ĝ, B, Y ) = 2(A + Ā) + 1
2

(
~p2
L + ~p2

R

)
are the masses of the boson/fermion

pairs of superpartners. Integrating over τ2, the above expression for Zh leads to the free
energy density (5.9), while for D = 8 the mass spectrum takes the more explicit form (6.5).
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