1,857 research outputs found

    Application of ERTS-1 Imagery to Flood Inundation Mapping

    Get PDF
    Application of ERTS-1 imagery to flood inundation mapping in East and West Nishnabotna basins of southwestern Iow

    Spin filters with Fano dots

    Get PDF
    We compute the zero bias conductance of electrons through a single ballistic channel weakly coupled to a side quantum dot with Coulomb interaction. In contrast to the standard setup which is designed to measure the transport through the dot, the channel conductance reveals Coulomb blockade dips rather then peaks due to the Fano-like backscattering. At zero temperature the Kondo effect leads to the formation of broad valleys of small conductance corresponding to an odd number of electrons on the dot. By applying a magnetic field in the dot region we find two dips corresponding to a total suppression in the conductance of spins up and down separated by an energy of the order of the Coulomb interaction. This provides a possibility of a perfect spin filter.Comment: 5 pages, 4 figures, to be published in European Physical Journal

    Superconductivity with s and p-symmetries in an extended Hubbard model with correlated hopping

    Full text link
    We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n_b of spin down (up) electrons on both sites involved. The hopping parameters are t_{AA}, t_{AB} and t_{BB} for n_b=0,1,2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for t_{AB}<t_{AA}=t_{BB} and sufficiently small U and V the model leads to triplet p-wave superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.Comment: Latex file, 14 pages, 2 postscript figure

    Method and apparatus for slicing crystals

    Get PDF
    The crystal slicing method is described as follows. A crystal is sliced in a plane parallel to flat, opposed parallel end faces of the crystal. The end faces of the crystal are gripped by a pair of opposed, perforated platens of a pair of vacuum chambers, one of which is translatable relative to the other. A blade cuts the crystal through the desired plane. A spring biases one of the vacuum chambers away from the other vacuum chamber while both of the faces are gripped by the vacuum chambers and the blade is cleaving the crystal. A sliced portion of the crystal gripped by one of the vacuum chambers is pulled away from the remainder of the crystal gripped by the second vacuum chamber when the crystal was cleaved by the blade through the plane

    Characterization of a Human Powered Nebulizer Compressor for Resource Poor Settings

    Get PDF
    Background Respiratory disease accounts for three of the ten leading causes of death worldwide. Many of these diseases can be treated and diagnosed using a nebulizer. Nebulizers can also be used to safely and efficiently deliver vaccines. Unfortunately, commercially available nebulizers are not designed for use in regions of the world where lung disease is most prevalent: they are electricity-dependent, cost-prohibitive, and not built to be reliable in harsh operating conditions or under frequent use. To overcome these limitations, the Human Powered Nebulizer compressor (HPN) was developed. The HPN does not require electricity; instead airflow is generated manually through a hand-crank or bicycle-style pedal system. A health care worker or other trained individual operates the device while the patient receives treatment. This study demonstrates functional specifications of the HPN in comparison with a standard commercially available electric jet nebulizer compressor, the DeVilbiss Pulmo-Aide 5650D (Pulmo-Aide). Methods Pressure and flow characteristics were measured with a rotameter and pressure transducer, respectively. Volume nebulized by each compressor was determined by mass, and particle size distribution was determined via laser diffraction. The Hudson RCI Micro Mist nebulizer mouthpiece was used with both compressors. Results The pressure and flow generated by the HPN and Pulmo-Aide were: 15.17 psi and 10.5 L/min; and 14.65 psi and 11.2 L/min, respectively. The volume of liquid delivered by each was equivalent, 1.097 ± 0.107 mL (mean ± s.e.m., n = 13) for the HPN and 1.092 ± 0.116 mL for the Pulmo-Aide. The average particle size was also equivalent, 5.38 ± 0.040 micrometers (mean ± s.e.m., n = 7) and 5.40 ± 0.025 micrometers, respectively. Conclusions Based on these characteristics, the HPN’s performance is equivalent to a popular commercially available electric nebulizer compressor. The findings presented in this paper, combined with the results of two published clinical studies, suggest that the HPN could serve as an important diagnostic and therapeutic tool in the fight against global respiratory health challenges including: tuberculosis, chronic obstructive pulmonary disease, asthma, and lower respiratory infections

    Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain

    Get PDF
    In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we re-examine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior cannot be extracted from these finite-size systems with open boundary conditions.Comment: 8 pages, 10 figures; v2: final version, references and Fig. 8 adde

    Mott transition in the Hubbard model away from particle-hole symmetry

    Get PDF
    We solve the Dynamical Mean Field Theory equations for the Hubbard model away from the particle-hole symmetric case using the Density Matrix Renormalization Group method. We focus our study on the region of strong interactions and finite doping where two solutions coexist. We obtain precise predictions for the boundaries of the coexistence region. In addition, we demonstrate the capabilities of this precise method by obtaining the frequency dependent optical conductivity spectra.Comment: 4 pages, 4 figures; updated versio

    Evidence of quantum criticality in the doped Haldane system Y2BaNiO5

    Full text link
    Experimental bulk susceptibility X(T) and magnetization M(H,T) of the S=1-Haldane chain system doped with nonmagnetic impurities, Y2BaNi1-xZnxO5 (x=0.04,0.06,0.08), are analyzed. A numerical calculation for the low-energy spectrum of non-interacting open segments describes very well experimental data above 4 K. Below 4 K, we observe power-law behaviors, X(T)=T^-alpha and M(H,T)/T^(1-alpha)=f(alpha,(H/T)), with alpha (<1) depending on the doping concentration x.This observation suggests the appearance of a gapless quantum phase due to a broad distribution of effective couplings between the dilution-induced moments.Comment: 4 pages, 3 figure

    Mirages and enhanced magnetic interactions in quantum corrals

    Full text link
    We develop a theory for the interactions between magnetic impurities in nanoscopic systems. The case of impurities in quantum corrals built on the (111) Cu surface is analyzed in detail. For elliptical corrals with one impurity, clear magnetic mirages are obtained. This leads to an enhancement of the inter-impurity interactions when two impurities are placed at special points in the corral. We discuss the enhancement of the conduction electron response to the local perturbation in other nanoscopic systems.Comment: 7 pages, 5 figure
    • …
    corecore