17 research outputs found

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Registered access: authorizing data access.

    No full text

    Developing and implementing an institute-wide data sharing policy

    Get PDF
    The Wellcome Trust Sanger Institute has a strong reputation for prepublication data sharing as a result of its policy of rapid release of genome sequence data and particularly through its contribution to the Human Genome Project. The practicalities of broad data sharing remain largely uncharted, especially to cover the wide range of data types currently produced by genomic studies and to adequately address ethical issues. This paper describes the processes and challenges involved in implementing a data sharing policy on an institute-wide scale. This includes questions of governance, practical aspects of applying principles to diverse experimental contexts, building enabling systems and infrastructure, incentives and collaborative issues

    Controlled Access under Review: Improving the Governance of Genomic Data Access

    No full text
    In parallel with massive genomic data production, data sharing practices have rapidly expanded over the last decade. To ensure authorized access to data, access review by data access committees (DACs) has been utilized as one potential solution. Here we discuss core elements to be integrated into the fabric of access review by both established and emerging DACs in order to foster fair, efficient, and responsible access to datasets. We particularly highlight the fact that the access review process could be adversely influenced by the potential conflicts of interest of data producers, particularly when they are directly involved in DACs management. Therefore, in structuring DACs and access procedures, possible data withholding by data producers should receive thorough attention.status: publishe

    A community effort to protect genomic data sharing, collaboration and outsourcing

    No full text
    The human genome can reveal sensitive information and is potentially re-identifiable, which raises privacy and security concerns about sharing such data on wide scales. In 2016, we organized the third Critical Assessment of Data Privacy and Protection competition as a community effort to bring together biomedical informaticists, computer privacy and security researchers, and scholars in ethical, legal, and social implications (ELSI) to assess the latest advances on privacy-preserving techniques for protecting human genomic data. Teams were asked to develop novel protection methods for emerging genome privacy challenges in three scenarios: Track (1) data sharing through the Beacon service of the Global Alliance for Genomics and Health. Track (2) collaborative discovery of similar genomes between two institutions; and Track (3) data outsourcing to public cloud services. The latter two tracks represent continuing themes from our 2015 competition, while the former was new and a response to a recently established vulnerability. The winning strategy for Track 1 mitigated the privacy risk by hiding approximately 11% of the variation in the database while permitting around 160,000 queries, a significant improvement over the baseline. The winning strategies in Tracks 2 and 3 showed significant progress over the previous competition by achieving multiple orders of magnitude performance improvement in terms of computational runtime and memory requirements. The outcomes suggest that applying highly optimized privacy-preserving and secure computation techniques to safeguard genomic data sharing and analysis is useful. However, the results also indicate that further efforts are needed to refine these techniques into practical solutions

    A Community Effort to Protect Genomic Data Sharing, Collaboration and Outsourcing

    No full text
    The human genome can reveal sensitive information and is potentially re-identifiable, which raises privacy and security concerns about sharing such data on wide scales. In 2016, we organized the third Critical Assessment of Data Privacy and Protection competition as a community effort to bring together biomedical informaticists, computer privacy and security researchers, and scholars in ethical, legal, and social implications (ELSI) to assess the latest advances on privacy-preserving techniques for protecting human genomic data. Teams were asked to develop novel protection methods for emerging genome privacy challenges in three scenarios: Track (1) data sharing through the Beacon service of the Global Alliance for Genomics and Health. Track (2) collaborative discovery of similar genomes between two institutions; and Track (3) data outsourcing to public cloud services. The latter two tracks represent continuing themes from our 2015 competition, while the former was new and a response to a recently established vulnerability. The winning strategy for Track 1 mitigated the privacy risk by hiding approximately 11% of the variation in the database while permitting around 160,000 queries, a significant improvement over the baseline. The winning strategies in Tracks 2 and 3 showed significant progress over the previous competition by achieving multiple orders of magnitude performance improvement in terms of computational runtime and memory requirements. The outcomes suggest that applying highly optimized privacy-preserving and secure computation techniques to safeguard genomic data sharing and analysis is useful. However, the results also indicate that further efforts are needed to refine these techniques into practical solutions
    corecore