40 research outputs found

    Characterization of soluble TLR2 and CD14 levels during acute dengue virus infection

    Get PDF
    Dengue virus infection results in a broad spectrum of diseases ranging from mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Hitherto, there is no consensus biomarker for the prediction of severe dengue disease in patients. Yet, early identification of patients who progress to severe dengue is pivotal for better clinical management. We have recently reported that an increased frequency of classical (CD14 ++CD16 -) monocytes with sustained high TLR2 expression in acutely infected dengue patients correlates with severe dengue development. Here, we hypothesized that the relatively lower TLR2 and CD14 expression in mild dengue patients is due to the shedding of their soluble forms (sTLR2 and sCD14) and that these could be used as indicators of disease progression. Therefore, using commercial sandwich ELISAs, we evaluated the release of sTLR2 and sCD14 by peripheral blood mononuclear cells (PBMCs) in response to in vitro dengue virus (DENV) infection and assessed their levels in acute-phase plasma of 109 dengue patients. We show that while both sTLR2 and sCD14 are released by PBMCs in response to DENV infection in vitro, their co-circulation in an acute phase of the disease is not always apparent. In fact, sTLR2 was found only in 20% of patients irrespective of disease status. In contrast, sCD14 levels were detected in all patients and were significantly elevated in DF patients when compared to DHF patients and age-matched healthy donors. Altogether, our results suggest that sCD14 may help in identifying patients at risk of severe dengue at hospital admittance. </p

    Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project

    Get PDF
    First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika.info:eu-repo/semantics/publishedVersio

    Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project

    Full text link
    First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika

    Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia

    Get PDF
    A better description of the extent and structure of genetic diversity in dengue virus (DENV) in endemic settings is central to its eventual control. To this end we determined the complete coding region sequence of 187 DENV-2 genomes and 68 E genes from viruses sampled from Vietnamese patients between 1995 and 2009. Strikingly, an episode of genotype replacement was observed, with Asian 1 lineage viruses entirely displacing the previously dominant Asian/American lineage viruses. This genotype replacement event also seems to have occurred within DENV-2 in Thailand and Cambodia, suggestive of a major difference in viral fitness. To determine the cause of this major evolutionary event we compared both the infectivity of the Asian 1 and Asian/American genotypes in mosquitoes and their viraemia levels in humans. Although there was little difference in infectivity in mosquitoes, we observed significantly higher plasma viraemia levels in paediatric patients infected with Asian 1 lineage viruses relative to Asian/American viruses, a phenotype that is predicted to result in a higher probability of human-to-mosquito transmission. These results provide a mechanistic basis to a marked change in the genetic structure of DENV-2 and more broadly underscore that an understanding of DENV evolutionary dynamics can inform the development of vaccines and anti-viral drugs

    Clinical and Virological Study of Dengue Cases and the Members of Their Households: The Multinational DENFRAME Project

    Get PDF
    Dengue is the most important mosquito-borne viral disease in humans. This disease is now endemic in more than 100 countries and threatens more than 2.5 billion people living in tropical countries. It currently affects about 50 to 100 million people each year. It causes a wide range of symptoms, from an inapparent to mild dengue fever, to severe forms, including dengue hemorrhagic fever. Currently no specific vaccine or antiviral drugs are available. We carried out a prospective clinical study in South-East Asia and Latin America, of virologically confirmed dengue-infected patients attending the hospital, and members of their households. Among 215 febrile dengue subjects, 177 agreed to household investigation. Based on our data, we estimated the proportion of dengue-infected household members to be about 45%. At the time of the home visit, almost three quarters of (29/39) presented an inapparent dengue infection. The proportion of inapparent dengue infection was higher in South-East Asia than in Latin America. These findings confirm the complexity of dengue disease in humans and the need to strengthen multidisciplinary research efforts to improve our understanding of virus transmission and host responses to dengue virus in various human populations

    Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations

    Get PDF
    The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world’s tropical belt over the past four centuries, after the evolution of a “domestic” form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector–host contact but also as a result of enhanced vector susceptibility

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
    corecore