2,689 research outputs found
Effectively Solving NP-SPEC Encodings by Translation to ASP
NP-SPEC is a language for specifying problems in NP in a declarative way. Despite the fact that the semantics of the language was given by referring to Datalog with circumscription, which is very close to ASP, so far the only existing implementations are by means of ECLiPSe Prolog and via Boolean satisfiability solvers. In this paper, we present translations from NP-SPEC into ASP, and provide an experimental evaluation of existing implementations and the proposed translations to ASP using various ASP solvers. The results show that translating to ASP clearly has an edge over the existing translation into SAT, which involves an intrinsic grounding process. We also argue that it might be useful to incorporate certain language constructs of NPSPEC into mainstream ASP
Effects of nucleus initialization on event-by-event observables
In this work we present a study of the influence of nucleus initializations
on the event-by-event elliptic flow coefficient, . In most Monte-Carlo
models, the initial positions of the nucleons in a nucleus are completely
uncorrelated, which can lead to very high density regions. In a simple, yet
more realistic model where overlapping of the nucleons is avoided, fluctuations
in the initial conditions are reduced. However, distributions are not
very sensitive to the initialization choice.Comment: 4 pages, 5 figures, to appear in the Bras. Jour. Phy
Semihard Interactions in Nuclear Collisions Based on a Unified Approach to High Energy Scattering
Our ultimate goal is the construction of a model for interactions of two
nuclei in the energy range between several tens of GeV up to several TeV per
nucleon in the centre-of-mass system. Such nuclear collisions are very complex,
being composed of many components, and therefore some strategy is needed to
construct a reliable model. The central point of our approach is the
hypothesis, that the behavior of high energy interactions is universal
(universality hypothesis). So, for example, the hadronization of partons in
nuclear interactions follows the same rules as the one in electron-positron
annihilation; the radiation of off-shell partons in nuclear collisions is based
on the same principles as the one in deep inelastic scattering. We construct a
model for nuclear interactions in a modular fashion. The individual modules,
based on the universality hypothesis, are identified as building blocks for
more elementary interactions (like e^+ e^-, lepton-proton), and can therefore
be studied in a much simpler context. With these building blocks under control,
we can provide a quite reliable model for nucleus-nucleus scattering, providing
in particular very useful tests for the complicated numerical procedures using
Monte Carlo techniques.Comment: 10 pages, no figures; Proc. of the ``Workshop on Nuclear Matter in
Different Phases and Transitions'', Les Houches, France, March 31 - April 10,
199
Gd(III)-Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination
In-cell distance determination by electron paramagnetic resonance (EPR) spectroscopy reveals essential structural information about biomacromolecules under native conditions. We demonstrate that the pulsed EPR technique RIDME (relaxation induced dipolar modulation enhancement) can be utilized for such distance determination. The performance of in-cell RIDME has been assessed at Q-band using stiff molecular rulers labeled with Gd(III)-PyMTA and microinjected into Xenopus laevis oocytes. The overtone coefficients are determined to be the same for protonated aqueous solutions and inside cells. As compared to in-cell DEER (double electron-electron resonance, also abbreviated as PELDOR), in-cell RIDME features approximately 5 times larger modulation depth and does not show artificial broadening in the distance distributions due to the effect of pseudosecular terms
Comparison of Hadronic Interaction Models at Auger Energies
The three hadronic interaction models DPMJET 2.55, QGSJET 01, and SIBYLL 2.1,
implemented in the air shower simulation program CORSIKA, are compared in the
energy range of interest for the Pierre Auger experiment. The model dependence
of relevant quantities in individual hadronic interactions and air showers is
investigated.Comment: Contribution to XII Int. Symp. on Very High Energy Cosmic Ray
Interactions, 4 pages, 8 figure
Initial Condition for QGP Evolution from NEXUS
We recently proposed a new approach to high energy nuclear scattering, which
treats the initial stage of heavy ion collisions in a sophisticated way.
We are able to calculate macroscopic quantities like energy density and
velocity flow at the end of this initial stage, after the two nuclei having
penetrated each other.
In other words, we provide the initial conditions for a macroscopic treatment
of the second stage of the collision.
We address in particular the question of how to incorporate the soft
component properly. We find almost perfect "Bjorken scaling": the rapidity
coincides with the space-time rapidity, whereas the transverse flow is
practically zero. The distribution of the energy density in the transverse
plane shows typically a very "bumpy" structure.Comment: 17 pages, 24 figure
Low-lying Dirac eigenmodes and monopoles in 3+1D compact QED
We study the properties of low-lying Dirac modes in quenched compact QED at
, employing () lattices and the
overlap formalism for the fermion action. We pay attention to the spatial
distributions of low-lying Dirac modes below and above the ``phase transition
temperature'' . Near-zero modes are found to have universal
anti-correlations with monopole currents, and are found to lose their temporal
structures above exhibiting stronger spatial localization properties. We
also study the nearest-neighbor level spacing distribution of Dirac eigenvalues
and find a Wigner-Poisson transition.Comment: 10 pages, 10 figures, 1 tabl
- …