
University of Huddersfield Repository

Alviano, Mario and Faber, Wolfgang

Effectively Solving NP-SPEC Encodings by Translation to ASP

Original Citation

Alviano, Mario and Faber, Wolfgang (2015) Effectively Solving NP-SPEC Encodings by

Translation to ASP. Journal of Experimental and Theoretical Artificial Intelligence, 27 (5). pp. 577-

601. ISSN 0952-813X

This version is available at http://eprints.hud.ac.uk/22773/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/30730901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

To appear in theJournal of Experimental & Theoretical Artificial Intelligence
Vol. 00, No. 00, Month 20XX, 1–24

Effectively Solving NP-SPEC Encodings by Translation to ASP

Mario Alvianoa and Wolfgang Fabera,b

aDepartment of Mathematics and Computer Science, University of Calabria, Italy
bSchool of Computing and Engineering, University of Huddersfield, UK

Email: mario@alviano.net, wf@wfaber.com

(Received 00 Month 20XX; final version received 00 Month 20XX)

NP-SPEC is a language for specifying problems in NP in a declarative way. Despite the fact that the
semantics of the language was given by referring to Datalog with circumscription, which is very close
to ASP, so far the only existing implementations are by means ofECL

i
PS

e Prolog and via Boolean
satisfiability solvers. In this paper, we present translations from NP-SPEC into ASP, and provide an ex-
perimental evaluation of existing implementations and the proposed translations to ASP using various
ASP solvers. The results show that translating to ASP clearly has an edge over the existing transla-
tion into SAT, which involves an intrinsic grounding process. We also arguethat it might be useful to
incorporate certain language constructs of NP-SPEC into mainstream ASP.

1. Introduction

NP-SPEC is a language that was proposed in (Cadoli, Ianni, Palopoli, Schaerf, & Vasile, 2000;
Cadoli, Palopoli, Schaerf, & Vasile, 1999) in order to specify problems in the complexity class
NP in a simple, clear, and declarative way. The language is based on Datalog with circumscrip-
tion, in which some predicates are circumscribed, while others are not and are thus “left open”.
In particular, the idea at the basis of NP-SPEC is to provide a few constructs, calledmetafacts,
for specifying the search space of an NP problem, that is, therelations to guess in order to solve
instances of the problem. The simplest metafact in NP-SPEC is usedto guess a subset of a rela-
tion, but more sophisticated metafacts are also available to guess, for example, a permutation or
a partitioning of the extension of a predicate. Actually, the semantics of these practical constructs
is defined by means of reductions to the metafact for guessing asubset of a relation.

The original software system supporting NP-SPEC was described in(Cadoli et al., 2000) and
was written in theECLiPSe Constraint Programming System, based on Prolog. A second soft-
ware system, SPEC2SAT1, was proposed in (Cadoli, Mancini, & Patrizi, 2006), which rewrites
NP-SPEC into propositional formulas for testing satisfiability.The system has also been tested
quite extensively in (Cadoli & Schaerf, 2005), also for several problems taken from CSPLIB,
with promising results.

Interestingly, to our knowledge so far no attempt has been made to translate NP-SPEC into
Answer Set Programming (ASP), which is very similar in spirit to Datalog with Circumscription,
and thus a good candidate as a transformation target. Moreover, several efficient ASP software
systems are available, which should guarantee good performance. A crucial advantage of ASP
versus propositional satisfiability is the fact that NP-SPEC problem descriptions are in general
not propositional, and therefore a reduction from NP-SPEC to SAT has to include an implicit

Preliminary versions of this work have been presented at ASPOCP 2012 and RCRA 2013.
1http://www.dis.uniroma1.it/cadoli/research/projects /NP-SPEC/code/SPEC2SAT/

1

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

instantiation (or grounding) step. Also ASP allows for variables, and ASP systems indeed pro-
vide optimized grounding procedures, which include many advanced techniques from database
theory (such as indexing, join-ordering, etc). This takes the burden of instantiating in a smart
way from the NP-SPEC translation when using ASP systems.

In this paper we provide a translation from NP-SPEC into ASP, usingdifferent language con-
structs. Our translation into ASP, together with the original SPEC2ASP rewriting, can be used to
compare two different frameworks commonly used for solvingproblems in the complexity class
NP. In particular, the aim of these translations is to implement general purpose solutions, rather
than specialized algorithms and data structures. It turns out that ASP has a clear advantage in this
respect thanks to its more comfortable modeling capability, even if we will also point out that
more involved and specialized rewritings into SAT may resultin very efficient performance. We
show the correctness of the translation in a proof sketch, and discuss properties and limitations
of the translation. We also provide a prototype implementation.

We then report on an extensive experimental analysis, whichincorporates all previous bench-
marks used for NP-SPEC, and also introduces new problem domains taken from ASP Com-
petitions. For the latter we have created NP-SPEC encodings thatare guaranteed to work with
the system SPEC2SAT, which poses a number of limitations on the NP-SPEC input. For these
domains we have created instances of increasing difficulty, which clearly showcase the compu-
tational advantages that a translation into ASP can provide.It turns out that this is quite inde-
pendent of the choice of SAT solver, as the bottleneck occurs before the invocation of the SAT
solver in the tool chain. The explanation is that translations to SAT need to include an implicit
grounding, while this is delegated to ASP systems in the translation to ASP.

We will also highlight a drawback that is shared by the rewritings into SAT and ASP, which
originates from the definition of the semantics of some metafacts of NP-SPEC. For example, in
order to encode the guess of a partition of a relation intok sets,k different, fresh constants are
introduced by the considered rewritings. It turns out that these identifiers are artificial and hence
not really important for solving the input problem. Nevertheless, all current ASP instantiators as
well as SPEC2SAT have to materializek different identifiers for each tuple in the domain rela-
tion, which also means that the performance of the subsequent solving phase will be affected by
the presence of obvious symmetries in the instantiated program. It is therefore our opinion that
ASP may gain in terms of both practical expressivity and efficiency if constructs like partition
would be introduced in the language and supported natively by solvers.

The remainder of the paper is structured as follows: in Section2 we review the language
NP-SPEC and give a very brief account of ASP. In Section 3 we provide the main ingredients
for translations from NP-SPEC to ASP, and discuss properties, limitations, and correctness. In
Section 4 we report on the experimental results. Finally, in Section 5 we draw our conclusions.

2. Preliminaries

This section introduces sufficient background regarding the two languages studied in this pa-
per, namely NP-SPEC and ASP. In particular, syntax and semantics of the two languages are
presented together with a few simple examples that will helpto understand the similarities and
differences of the two frameworks. Special attention is given here to the constructs used in NP-
SPEC to specify nondeterministic guesses, which are referred to asmetafacts.

2.1. NP-SPEC

We first provide a brief definition of NP-SPEC programs. For details,we refer to (Cadoli et al.,
2000). We also note that a few minor details in the input language of SPEC2SAT (in which the
publicly available examples are written) are different from what is described in (Cadoli et al.,

2

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

2000).
An NP-SPEC program consists of two main sections2: one section calledDATABASE and

one calledSPECIFICATION, each of which is preceded by the respective keyword.

2.1.1. DATABASE

The database section defines extensional predicates or relations and (interpreted) constants. Ex-
tensional predicates are defined by writing

p = {t1, . . . , tn};

wherep is a predicate symbol and eachti is a tuple with matching arity. For unary predicates,
each tuple is simply an integer or a constant symbol; for arity greater than 1, it is a comma-
separated sequence of integers or constant symbols enclosed in parentheses. Unary extensions
that are ranges of integers can also be abbreviated ton..m, wheren andm are integers or inter-
preted constants. Constant definitions are written asc = i; wherei is an integer.

Example 1: The following defines the predicateedge representing a graph with six nodes and
nine edges, and a constantn representing the number of nodes.

DATABASE
n = 6;
edge = {(1, 2), (3, 1), (2, 3), (6, 2), (5, 6), (4, 5), (3, 5), (1, 4), (4, 1)};

2.1.2. SPECIFICATION

TheSPECIFICATION section consists of two parts: a search space declaration and a stratified
Datalog program. The search space declaration serves as a domain definition for “guessed”
predicates and must be one or more of themetafactsSubset(d, p), Permutation(d, p),
Partition(d, p, n), andIntFunc(d, p, n..m), which we will describe below.

Subset(d,p). This is the basic construct to which all following search space declaration
constructs are reduced in the semantic definition in (Cadoli et al., 2000). Here,d is a domain
definition, which is either an extensional predicate, a rangen..m, or a Cartesian product (><),
union (+), intersection (∗), or difference (−) of two domains. Symbolp is a predicate identifier
and the intended meaning is that the extension ofp can be any subset of the domain definition’s
extension, thus giving rise to nondeterminism or a “guess”.

Example 2: Together with the code of Example 1, the following specification will represent all
subgraphs (including the original graph) as extensions of predicatesubgraph.

SPECIFICATION
Subset(edge, subgraph).

Permutation(d,p). Concerning this construct,d is again a domain definition, andp is a
predicate identifier whose extension has the same cardinality as that ofd. In particular, every
tuple of the extension ofp contains a distinct tuple of the extension ofd, and an additional
argument associating a unique integer between 1 and the cardinality of the extension ofd (say,

2SPEC2SAT also has a third, apparently undocumented section calledSEARCH, which seems to define only output features and
which we will not describe here.

3

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

c), thereby defining a permutation. The extensions ofp thus define bijective functions from
extensions ofd to {1..c}.

Example 3: Together with the code of Example 1, the following specification will represent all
enumerations of edges.

SPECIFICATION
Permutation(edge, edgeorder).

One extension ofedgeorder that reflects the ordering of the edges as written in Example 1 is

edgeorder(1, 2, 1), edgeorder(3, 1, 2), edgeorder(2, 3, 3),
edgeorder(6, 2, 4), edgeorder(5, 6, 5), edgeorder(4, 5, 6),
edgeorder(3, 5, 7), edgeorder(1, 4, 8), edgeorder(4, 1, 9).

Partition(d,p,n). Also in this casep will have one argument more thand. In this case,
extensions ofp will define functions from tuples of the extension ofd to {0..n− 1}, thereby
definingn (possibly empty) partitions.

Example 4: Together with the code of Example 1, the following specification will represent all
possible pairs of graphs that partition the input graph.

SPECIFICATION
Partition(edge, partition, 2).

One extension ofpartition that has the first four edges in the first partition (i.e., partition 0) and
the last five edges in the second partition (i.e., partition 1) would be

partition(1, 2, 0), partition(3, 1, 0), partition(2, 3, 0),
partition(6, 2, 0), partition(5, 6, 1), partition(4, 5, 1),
partition(3, 5, 1), partition(1, 4, 1), partition(4, 1, 1).

IntFunc(d,p,n..m). Again,p will have one argument more thand. Here, extensions ofp
will define functions from tuples of the extension ofd to {n..m}.

Example 5: The following specification is equivalent to the one in Example 4:

SPECIFICATION
IntFunc(edge, partition, 0..1).

Stratified Datalog Program. The stratified Datalog program is a collection of rules

h < −− b1, . . . , bm, NOT bm+1, . . . , NOT bn.

where eachh, b1, . . . , bn are atoms. These atoms can be of the formp(t1, . . . , tk) wherep is a
predicate symbol with arityk and allti are constants, variables, or arithmetic expressions formed
over these. The predicates can be built-in predicates (==, <, >, >=, <=, ! =), in which case
the atoms are written using infix notation. The atoms can also beaggregate atoms involving
COUNT, SUM,MIN,MAX, written as for exampleSUM(p(∗, ,Y),Z : n..m) where:∗ spec-
ifies the argument to be aggregated over; variables that are not shared with other rule literals
are local (as a special case the anonymous variable) and represent the arguments that are not
fixed; variables that are shared with other rule literals are considered fixed in the aggregation;

4

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

and variableZ will contain the valuation of the aggregate, which must be inthe rangen..m. The
atomh can also be the special atomfail that must not be used otherwise. This atom will always
be interpreted as false, allowing for the specification of integrity constraints. The< −− string
represents rule implication.

The rules must be stratified in the traditional sense (see for example (Apt, Blair, & Walker,
1988; Van Gelder, 1988)), meaning that there cannot be recursion through negation. Also aggre-
gates must occur in a stratified way (see for example (Faber, Pfeifer, Leone, Dell’Armi, & Ielpa,
2008)), meaning that there cannot be recursion through aggregates. One can add comments,
written inC++ style (using/ ∗ ∗/ or //).

Example 6: As an example, consider the well-known Hamiltonian Cycle problem. The NP-
SPEC distribution contains an example program for an example graph:

DATABASE
n = 6; //no. of nodes
edge = {(1, 2), (3, 1), (2, 3), (6, 2), (5, 6), (4, 5), (3, 5), (1, 4), (4, 1)};

SPECIFICATION
Permutation({1..n}, path).
fail < −− path(X,P), path(Y,P + 1), NOT edge(X,Y).
fail < −− path(X, n), path(Y, 1), NOT edge(X,Y).

TheDATABASE section contains an encoding of the example graph by means ofthe binary
predicateedge and defines a constantn for representing the number of nodes of that graph. Im-
plicitly it is assumed that the nodes are labeled by integersfrom 1 to n. TheSPECIFICATION
section then first guesses a permutation of the nodes and then verifies the Hamiltonian Cycle
condition by means of integrity constraints, one exploiting the linear order of the permutation
identifiers, and another one to close the cycle from the last permutation identifier to the first one.

The semantics of NP-SPEC programs is provided in (Cadoli et al., 2000) by means of Datalog
with Circumscription (DATALOG

CIRC). The syntax of this formalism consists of (positive)
Datalog rules, and may also contain integrity constraints,which are written as rules containing
the predicatefail in rule heads. The semantics is provided by means of(P ;Q)-minimal models.
For two Herbrand modelsM,N of aDATALOG

CIRC program,M ≤P ;Q N holds for two sets
of predicatesP andQ if and only if (i) predicates inQ have the same extension inM andN
and (ii) for each predicatep ∈ P , the extension ofp in M is a subset (possibly not proper) of the
extension ofp in N . A Herbrand modelM of aDATALOG

CIRC program is(P ;Q)-minimal
if there is no Herbrand modelN of the program such thatN ≤P ;Q M andM 6≤P ;Q N . This
definition guarantees that only some predicates (those inP) are minimized. That means that
among all models only those which are minimal with respect topredicates inP are accepted.
For NP-SPEC, predicates that are defined by means of metafacts willbe in the setQ. Moreover,
among these only those which make the special symbolfail false are considered and referred to
as answers.

An NP-SPEC program is then transformed toDATALOG
CIRC as follows:

EachDATABASE expressionp = {t1, . . . , tn} is transformed to factsp(t1) · · · p(tn), each
expressionp = {n..m} to factsp(n) · · · p(m). Constant declarations such asc = i are expanded
on the fly.

ConcerningSPECIFICATION expressions, forSubset(d, p) the domaind is material-
ized into a relationd; moreover, facts{outp(t1, . . . , tn) | (t1, . . . , tn) ∈ Hn \ d}, where
n is the arity of d and p, and H is the Herbrand universe, and an integrity constraint
fail : − p(X1, . . . ,Xn), outp(X1, . . . ,Xn) are introduced. All other metafacts are reduced to
the basic metafactSubset plus some rules. For the metafactPermutation(d, p), the metafact
Subset(d >< {1..m}, p) (m the cardinality of the extension ofd) is translated as noted earlier,

5

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

and in addition the following rules are created:

p1(X1, . . . ,Xn) : − p(X1, . . . ,Xn,Z).
fail : − d(X1, . . . ,Xn), cop1(X1, . . . ,Xn).
fail : − p(X1, . . . ,Xn,Y), p(X1, . . . ,Xn,Z),Y! = Z.
fail : − p(X1, . . . ,Xn,A), p(Y1, . . . ,Yn,A),X1! = Y1.

...
fail : − p(X1, . . . ,Xn,A), p(Y1, . . . ,Yn,A),Xn! = Yn.

wherecop1 represents the complement ofp1 and will be defined later.
For the metafactPartition(d, p, k), the metafactSubset(d >< {0..k− 1}, p) is translated as

noted earlier, together with the following rules:

p1(X1, . . . ,Xn) : − p(X1, . . . ,Xn,Z).
fail : − d(X1, . . . ,Xn), cop1(X1, . . . ,Xn).
fail : − p(X1, . . . ,Xn,Y), p(X1, . . . ,Xn,Z),Y! = Z.

Finally, for IntFunc(d, p, i..j), the metafactSubset(d >< {i..j}, p) is translated as noted ear-
lier, together with the same additional rules as forPartition(d, p, k).

All NP-SPEC rules are directly translated intoDATALOG
CIRC rules, replacing occurrences

of NOT p by cop (p being a predicate). For any predicatep (with arityn) occurring negatively in
a rule (and for auxiliaryp1 predicates introduced by the translation of metafacts), the following
rules are generated:

defp(X1, . . . ,Xn) : − p(X1, . . . ,Xn).
defp(X1, . . . ,Xn) : − cop(X1, . . . ,Xn).
fail : − p(X1, . . . ,Xn), cop(X1, . . . ,Xn).

What is missing is a device that ensures thatdefp becomes true for all tuples of the Herbrand
universe. In (Cadoli et al., 2000), this is done by means of a “restricted clause,” a concise univer-
sal constraint. In order to simplify issues, we will only consider Herbrand models which contain
all atomsdefp(t1, . . . , tn) such thatdefp has a defining rule in the translation,n is its arity, and
(t1, . . . , tn) ∈ Hn.

The semantics of an NP-SPEC program is then provided by the(P ;Q)-minimal Herbrand
models of the thus obtainedDATALOG

CIRC program (with the restriction of Herbrand models
mentioned in the previous paragraph), whereQ contains all predicates defined by metafacts and
all predicates of the formcop in the translated program, andP contains all other predicates. Let
us denote the semantics of an NP-SPEC programΠ by PQMM(Π). More formally:

Definition1: Let Π be an NP-SPEC program, andΠ′ be its translation intoDATALOG
CIRC .

Moreover, letpred(Π′) denote the predicates occurring inΠ′,

Q := {p | Subset(d, p) occurs inΠ} ∪
{p | Permutation(d, p) occurs inΠ} ∪
{p | Partition(d, p, k) occurs inΠ} ∪
{p | IntFunc(d, p, i..j) occurs inΠ} ∪
{cop | cop ∈ pred(Π′)}

P := pred(Π′) \Q.

6

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

The semantics ofΠ is defined as the following set of Herbrand models:

PQMM(Π) := {M | M is a(P ;Q)-minimal Herbrand model ofΠ′}.

2.2. ASP

Concerning ASP, we only give a very brief overview, details may be found in works such as
(Baral, 2003; Gebser et al., 2011; Leone et al., 2006). An ASP program consists of rules

L1 ∨ · · · ∨ Lk : − Body

where theLi are literals containing variables and constants3 (possibly containing strong nega-
tion) andBody, which is a conjunction of literals, that may also contain built-ins, aggregates and
default negation. Rules without heads act like integrity constraints. The semantics is based on
the Gelfond-Lifschitz reduct (Gelfond & Lifschitz, 1991) andalso guarantees minimality of the
answer sets. We denote the set of answer sets of an ASP programΠ byAS(Π). More formally:

Definition2: Let Π be an ASP program, andI be an Herbrand interpretation. Letground(Π)
denote the ground version ofΠ, obtained by replacing variables in all possible ways. The reduct
of Π with respect toI, denotedΠI , is obtained fromground(Π) by removing all ground rules
whose body is false with respect toI. I is an answer set ofΠ if I is a model ofΠ and there is
noJ ⊂ I such thatJ is an answer set ofΠ. The semantics ofΠ is then defined as the following
set of Herbrand models:

AS(Π) := {M | M is an answer set ofΠ}.

Example 7: As an example, consider the Hamiltonian Cycle problem and instance from above.
An ASP encoding similar to the NP-SPEC program seen earlier would be:

#const n = 6.
edge(1, 2). edge(3, 1). edge(2, 3). edge(6, 2). edge(5, 6).
edge(4, 5). edge(3, 5). edge(1, 4). edge(4, 1).
d(1..n).
path(X, 1)∨path(X, 2)∨path(X, 3)∨path(X, 4)∨path(X, 5)∨path(X, 6) : − d(X).
: − path(X,A), path(Y,A), X ! = Y.
: − path(X,P), path(Y,Z), not edge(X,Y), Z = P + 1.
: − path(X, n), path(Y, 1), not edge(X,Y).

This program is usable for gringo with clasp, using the--shift option (transforming the
disjunctive rule into several nondisjunctive ones), and DLV. We can observe that the extensional
definition is rewritten into a number of facts and that the constant definition also just changes
syntax. As for the permutation statement, here we first use a predicated representing the domain
definition, and then a disjunctive rule and an integrity constraint. The disjunctive rule states that
each tuple in the domain definition must be assigned one of the numbers 1 to 6, and the integrity
constraint enforces the bijection, that is, no different tuples of the domain definition must be
assigned the same number. The final two integrity constraints are direct translations from the
NP-SPEC program. The only difference is the arithmetic expression that has been moved outside
the fact in order to conform to DLV’s syntax (gringo would also have accepted the immediate
translation from the NP-SPEC program).

3Many modern ASP systems also allow for function symbols, but they are not needed here.

7

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

3. Translation from NP-SPEC to ASP

We now report how the various constructs of NP-SPEC programs can be translated into ASP.
We start with theDATABASE section constructs. An extensional declaration of the form
p = {t1, . . . , tn} will be translated to factsp(t1) · · · p(tn), and one of the formp = {n..m}
will be translated to factsp(n) · · · p(m). Constant declarations such asc = i, instead, will be
managed in-memory by replacing all occurrences ofc with i.

Now for the main task, translating theSPECIFICATION constructs. Any composed domain
definition is associated with a fresh extensional predicated as follows:

• for the Cartesian productp >< q, the following set of facts is created:

{d(x1, . . . , xi+j) | p(x1, . . . , xi) ∧ q(xi+1, . . . , xi+j)},

wherei andj are the arities ofp andq, respectively;
• for the unionp + q, the following set of facts is created:

{d(x1, . . . , xi) | p(x1, . . . , xi) ∨ q(x1, . . . , xi)},

wherei is the arity of bothp andq;
• for the intersectionp ∗ q, the following set of facts is created:

{d(x1, . . . , xi) | p(x1, . . . , xi) ∧ q(x1, . . . , xi)},

wherei is the arity of bothp andq; and
• for the differencep− q, the following set of facts is created:

{d(x1, . . . , xi) | p(x1, . . . , xi) ∧ ¬.q(x1, . . . , xi)},

wherei is the arity of bothp andq, and¬.q(x1, . . . , xi) is true if and only if the fact
q(x1, . . . , xi) is not part of the translation.

For nested domain definitions, we just repeat this process recursively using fresh symbols in
each recursive step. In the following we will assume that domain definitions have been treated
in this way and that the top-level predicate of the translation isd and has arityn.

We then look at metafacts. The simplest one isSubset(d, p), for which we produce

p(X1, . . . ,Xn) ∨ −p(X1, . . . ,Xn) : − d(X1, . . . ,Xn). (1)

For the metafactPermutation(d, p), we will create

p(X1, . . . ,Xn, 1) ∨ . . . ∨ p(X1, . . . ,Xn, c) : − d(X1, . . . ,Xn).
: − p(X1, . . . ,Xn,A), p(Y1, . . . ,Yn,A),X1! = Y1.

...
: − p(X1, . . . ,Xn,A), p(Y1, . . . ,Yn,A),Xn! = Yn.

(2)

wheren is the arity ofd andc is the cardinality ofd. The first rule specifies intuitively that
for each tuple ind one ofp(X1, . . . ,Xn, 1) · · · p(X1, . . . ,Xn, c) should hold, and by minimality
exactly one of these will hold. The integrity constraints ensure that no different numbers will be
associated to the same tuple.

8

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

The remaining metafacts are actually much simpler to translate, as the bijection criterion does
not have to be checked.Partition(d, p, k) is translated as follows:

p(X1, . . . ,Xn, 0) ∨ . . . ∨ p(X1, . . . ,Xn, k− 1) : − d(X1, . . . ,Xn). (3)

wheren is the arity ofd. Similarly, IntFunc(d, p, i..j) is translated as follows:

p(X1, . . . ,Xn, i) ∨ . . . ∨ p(X1, . . . ,Xn, j) : − d(X1, . . . ,Xn). (4)

What remains are the Datalog rules of theSPECIFICATION section. Essentially, each
Head < −− Body is directly translated intoHead′ : − Body′, with only minor differences.
If Head is fail, thenHead′ is empty, otherwise it will be exactly the same. The difference be-
tweenBody andBody′ is due to different syntax for arithmetics, aggregates and due to safety
requirements. Concerning arithmetics, gringo can accept almost the same syntax as NP-SPEC
with only minor differences (#abs instead ofabs,#pow instead of̂), while DLV is much more
restrictive. DLV currently does not support negative integers and it does not provide constructs
corresponding tô . Moreover, arithmetic expressions may not be nested in DLV programs, but
this limitation can be overcome by flattening the expressions.

Concerning aggregates, DLV and gringo support similar syntax, which is a little bit different
from the one used in NP-SPEC but rather straightforward to rewrite according to the following
schema: Arguments marked with asterisks are first replaced with fresh variables; these are the
arguments on which the aggregation function is applied. Apart from COUNT, exactly one as-
terisk may appear in each aggregate. Hence, an aggregateSUM(p(∗, ,Y),Z : n..m) is written
as

#sum{X : p(X, ,Y)} = Z, d(Z)

whereX is a fresh variable andd is a fresh predicate defined by factsd(n) · · · d(m). Aggregates
MIN andMAX are rewritten similarly, whileCOUNT(p(∗, , ∗,Y),Z : n..m) is written as

#count{X1,X2 : p(X1, ,X2,Y)} = Z, d(Z)

A more difficult problem presents the safety conditions enforced by the ASP systems. NP-
SPEC has a fairly lax safety criterion, while for instance DLV requires each variable to occur in
a positive, non-builtin body literal, and also gringo has a similar criterion. This mismatch can be
overcome by introducing appropriate domain predicates when needed, we omit the details for
clarity and will assume in the following that only safe NP-SPEC rules are used.

Given an NP-SPEC programΠ, we denote byΠ∗ the translation to ASP.

Theorem 3.1: For an NP-SPEC programΠ, there is a one-to-one correspondence between
PQMM(Π) andAS(Π∗).

3.1. Proof of Theorem 3.1

Throughout this section, letΠ be an NPSPEC program, andΠ′ be theDATALOG
CIRC program

associated withΠ. We first prove that each(P ;Q)-minimal model ofΠ′ can be mapped into an
answer set ofΠ∗. In particular, we provide the mapping function in the next definition. We then
we show that the output of the mapping is a model ofΠ∗, and that it is also minimal for the
associated reduct.

9

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

Definition3: LetM ∈ PQMM(Π). We define

M∗ = (M \ {outp(t) | outp(t) ∈ M}
\ {cop(t) | cop(t) ∈ M}
\ {defp(t) | defp(t) ∈ M}
\ {p1(t) | p(t, s) ∈ M})
∪ {−p(t) | −p is a predicate inΠ∗, p(t) /∈ M}.

Lemma 3.2: LetM ∈ PQMM(Π). M∗ is a model ofΠ∗.

Proof. For translations of NP-SPEC rules, this holds because any positive body literals and head
atoms inΠ′ are true inM if and only if they are true inM∗. Any negative literalNOT a(t) in
Π′ is true inM if and only if coa(t) ∈ M anda(t) 6∈ M , thereforea(t) 6∈ M∗ andnot a(t) is
true inM∗. For constraints, this holds becausefail 6∈ M .

For translations of NP-SPEC metafacts, we provide detailed comments below.

• ForSubset(d, p), the associated rule (1) is satisfied becauseM obeys the excluding mid-
dle law. In particular, sinceM satisfiesSubset(d, p), if p(t) ∈ M thend(t) ∈ M , which
in turn impliesp(t) ∈ M∗. On the other hand, for eachd(t) ∈ M such thatp(t) /∈ M ,
M∗ contains−p(t).

• ForPermutation(d, p) we observe that for each tuplet in d there is exactly onep(t, s) in
M andM∗ such thats ∈ [1..m] wherem is the cardinality of the extension ofd. Hence
the disjunctive rule in (2) is satisfied. Moreover, the constraints in (2) are equal to the
DATALOG

CIRC constraints inΠ′ and thus also satisfied.
• ForPartition(d, p, k) we observe that for each tuplet in d there is exactly onep(t, s) in
M andM∗ such thats ∈ [0..k − 1], hence rule (3) inΠ∗ is satisfied.

• Similarly, for IntFunc(d, p, k) for each tuplet in d there is exactly onep(t, s) in M and
M∗ such thats ∈ [i..j], hence rule (4) inΠ∗ is satisfied.

Theorem 3.3: LetM ∈ PQMM(Π). M∗ is an answer set ofΠ∗.

Proof. By the previous lemma, it remains to show thatM∗ is also a minimal model of the reduct
(Π∗)M

∗

. Assume by contradiction that there isN ⊂ M∗ such thatN is a model of(Π∗)M
∗

, and
consider interpretation

N ′ := M \ (M∗ \N)
\ {p1(t) | p1 is a predicate inΠ′, p(t) ∈ (M∗ \N)}.

Our aim is to show thatN ′ is a model ofΠ, which would contradictM ∈ PQMM(Π) because
N ′ ≤P ;Q M andM 6≤P ;Q N ′. We start by observing that rules in(Π∗)M

∗

modeling metafacts
are such that all predicates associated with metafacts havethe same extension inN andM∗.
Indeed, this is true by construction ofM∗ becauseM is a (P ;Q)-minimal Herbrand model of
Π′ by assumption, and therefore each ground instance of a disjunctive rules in (1)–(4) is satisfied
either because of a false body literal, or because of auniquetrue head atom. The remaining
predicates are defined by Datalog rules, which have a one-to-one corresponding intoΠ′. We can
thus conclude thatN ′ is a model ofΠ, i.e., a contradiction.

We now provide the mapping on the other direction, i.e., a function associating any answer set
of Π∗ with a (P ;Q)-minimal model ofΠ′.

10

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

Definition4: LetA ∈ AS(Π∗). We define

A◦ = (A \ {−p(t) | −p is a predicate inΠ∗})

∪ {outp(t) | Subset(d, p) ∈ Π′, t ∈ H|p|, d(t) 6∈ A}

∪ {outp(t, s) | Permutation(d, p) ∈ Π′, t ∈ H|d|, s ∈ [1..c(d)], d(t) 6∈ A}

∪ {outp(t, s) | Partition(d, p, k) ∈ Π′, t ∈ H|d|, s ∈ [1..k], d(t) 6∈ A}

∪ {outp(t, s) | IntFunc(d, p, i..j) ∈ Π′, t ∈ H|d|, s ∈ [i..j], d(t) 6∈ A}
∪ {p1(t) | p(t, s) ∈ A}

∪ {cop(t) | p occurs negated inΠ′, t ∈ H|p|, p(t) 6∈ A}

∪ {defp(t) | p occurs negated inΠ′, t ∈ H|p|}

wherec(d) is the cardinality of the extension ofd.

Theorem 3.4: LetA ∈ AS(Π∗). ThenA◦ ∈ PQMM(Π).

Proof. A◦ is an Herbrand model ofΠ′ by construction. Assume by contradiction that there is
another Herbrand modelB of Π′ such thatB ≤P ;Q A◦ andA◦ 6≤P ;Q B. It can be shown that

B′ := A \ (A◦ \B)

is a model of(Π∗)A such thatB′ ⊂ A, which is a contradiction. Indeed, predicates defined by
metafacts have the same extension inA◦ and inB by assumption. The same observation also
applies to predicates of the formcop(t), which means that the interpretation of negative literals
is fixed in(Π∗)A. The remaining predicates are defined by Datalog rules inΠ′, and have one-to-
one counterparts inΠ∗. Each rule of this kind whose body is true with respect to bothA◦ andB
is such that the head is true with respect to bothA◦ andB as well. Therefore, the corresponding
rule inΠ∗ is such that the head is true with respect toB′, which completes our proof.

3.2. Alternative translations

In this section we provide a brief description of an alternative translation using aggregates and
choice rules. We start with the metafactSubset(d, p), which can be translated as follows:

{p(X1, . . . ,Xn) : d(X1, . . . ,Xn)}. (5)

Concerning the metafactPermutation(d, p), the disjunctive rule can be replaced by the follow-
ing choice rule:

1{p(X1, . . . ,Xn, 1..c)}1 : − d(X1, . . . ,Xn). (6)

while then integrity constraints can be replaced by just one using an aggregate:

: − #count{X1, . . . ,Xn : p(X1, . . . ,Xn,A)} > 1, p(, . . . , ,A). (7)

For the metafactPartition(d, p, k), the following choice rule can be used

1{p(X1, . . . ,Xn, 0..k− 1)}1 : − d(X1, . . . ,Xn). (8)

while the metafactIntFunc(d, p, i..j) can be transformed into

1{p(X1, . . . ,Xn, i..j)}1 : − d(X1, . . . ,Xn). (9)

11

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

DATABASE
n = 10;
manAssignsScore = {(1,1,2), (1,2,1), ...};
womanAssignsScore = {(1,1,2), (1,2,2), ...};

SPECIFICATION
IntFunc({1..n}, match, 1..n).

fail <-- match(M1,W), match(M,W), M <> M1.

fail <-- match(M,W1), manAssignsScore(M,W,Smw), W1 <> W,
manAssignsScore(M,W1,Smw1), Smw > Smw1,
match(M1,W), womanAssignsScore(W,M,Swm),
womanAssignsScore(W,M1,Swm1), Swm >= Swm1.

Figure 1. Encoding of stable marriage

In order to show the equivalence of the alternative translations with the first translation intro-
duced in this section, we observe that the rewritten programs arehead-cycle-free(Ben-Eliyahu
& Dechter, 1994). For such programs disjunction can be eliminated by means of a procedure
known asshift (Eiter, Fink, & Woltran, 2007), which essentially replaces a disjunctive rule of
the form:

α1 ∨ · · · ∨ αn : − body.

into n rules of the form:

αi : − body, not α1, . . . , not αi−1, not αi+1, . . . , not αn.

one for eachi ∈ [1..n]. According to the ASP Core 2 standard (Calimeri, Ianni, & Ricca, 2014),
the rules above defines the semantics of a choice rule of the form:

{α1; · · · ; αn} : − body.

from which we derive the equivalence of (1) and (5). Similarly, the semantics of a choice rule of
the form:

l{α1; · · · ; αn}u : − body.

is defined by the following rules:

{α1; · · · ; αn} : − body.
: − l ≤ #count{α1; · · · ; αn} ≤ u.

from which we derive the equivalence of (2) and (6)–(7), (3) and (8), and (4) and (9).

4. Experiments

We have created a prototype implementation of the transformation described in Section 3, which
is available athttp://archives.alviano.net/npspec2asp/ . It is written in C++
usingbison andflex , and called NPSPEC2ASP. The implementation does only rudimentary

12

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

DATABASE
edge = {(0,6), (0,3), (0,4), (1,5), ...};
node = {1, 0, 3, 2, 5, 4, 7, 6, 9, 8};
num_edges = 42;

SPECIFICATION
IntFunc(node, value, 0..num_edges).

edge_value(X,Y,V1-V2) <-- edge(X,Y), value(X,V1), value (Y,V2), V1 >= V2.
edge_value(X,Y,V2-V1) <-- edge(X,Y), value(X,V1), value (Y,V2), V2 > V1.

fail <-- value(X,N), value(Y,N), X<Y.

fail <-- edge_value(X,Y,N1), edge_value(X,Y,N2), N1 != N2 .

fail <-- edge_value(X1,Y1,N), edge_value(X2,Y2,N), X1 != X2.
fail <-- edge_value(X1,Y1,N), edge_value(X2,Y2,N), Y1 != Y2.

Figure 2. Encoding of graceful graphs

correctness checks of the program and is focused on generating ASP programs for correct NP-
SPEC input. It generates either the disjunctive rules or the choice rules described in Section 3.
For the experiments, the transformation used forPermutation produced the integrity constraint
with the counting aggregate. We used this implementation totest the viability of our approach,
in particular assessing the efficiency of the proposed rewriting into ASP with respect to the
previously available transformation into SAT.

4.1. Benchmark settings

In the benchmark we included several instances available onthe NP-SPEC site. More specif-
ically, we considered two sets of instances, namely themiscellaneaandcsplib2npspecbench-
marks. Even if these instances have been conceived for demonstrating the expressivity of the
language rather than for assessing the efficiency of an evaluator, it turned out that even for these
comparatively small instances there are quite marked performance differences.

We also considered benchmarks from the 3rd and 4th ASP Competitions (Calimeri et al., 2011;
Alviano et al., 2013). In particular, we testedbottle filling, graceful graphs, Hamiltonian cycle,
andstable marriage. For these domains we generated instances smaller in size than those used
for the competitions. This is motivated by a compromise we hadto do in order to test SPEC2SAT.
In fact, it seems that SPEC2SAT does not support recursive rules,which often requires to write
encodings that are intrinsically inefficient. Just to make anexample, the encoding of Hamiltonian
cycle available on the web site of SPEC2SAT and reported in Example6 guesses a permutation
of the nodes on the input graphs. The search space has thus sizen!, wheren is the number of
nodes in the input graph. A more efficient encoding instead would guess a subset of the edges,
thus defining a significantly smaller search space of size2m, wherem is the number of edges.
The other tested encodings are reported in Figures 1–3. We observe that the encodings of stable
marriage and graceful graphs use the metafactIntFunc, while the encoding of bottle filling uses
Subset and aggregates.

The experiment was executed on an Intel Xeon CPU X3430 2.40GHz with 4 GB of central
memory, running Debian 7.2 with kernel Linux 3.2.0-4-amd64.Memory was limited to 3 GB
and time to 600 seconds. The tool NPSPEC2ASP was compiled with gcc 4.8.2. The other tools
involved in the experiment are SPEC2SAT 1.1 (Cadoli & Schaerf, 2005), satz 215.2 (Li, 1999),

13

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

DATABASE
rows = 6;
cols = 6;
xsucc = {(0,1), (1,2), (2,3), (3,4), (4,5)};
ysucc = {(0,1), (1,2), (2,3), (3,4), (4,5)};
xvalue = {(1,2), (2,1), (3,3), (4,2), (5,0)};
yvalue = {(1,1), (2,0), (3,3), (4,2), (5,2)};
bottle = {(1,1,4), (2,3,2), (2,2,2), (2,3,3), ...};
bottle_position = {(1,4), (3,2), (2,2), (3,3), ...};

SPECIFICATION
Subset(bottle_position, filled).

fail <-- xvalue(Y,V), COUNT(filled(* ,Y),C:0..cols), C <> V.
fail <-- yvalue(X,V), COUNT(filled(X, *),C:0..rows), C <> V.

fail <-- bottle(B,X1,Y1), bottle(B,X2,Y2), ysucc(Y1,Y2) ,
filled(X1,Y1), NOT filled(X2,Y2).

fail <-- bottle(B,X1,Y), bottle(B,X2,Y), filled(X1,Y), N OT filled(X2,Y), X1 <> X2.

Figure 3. Encoding of bottle filling

minisat 2.2 (Éen & Sörensson, 2003), gringo 3.0.54 (Gebser, Schaub, & Thiele, 2007), clasp
2.1.5 (Gebser, Kaufmann, Neumann, & Schaub, 2007), cmodels 3.85 (Lierler & Maratea, 2004),
DLV 2012-12-17 (Alviano et al., 2011), and wasp 1.0 (Dodaro et al., 2011).

In our experiments, we first measured the running time required by SPEC2SAT and
NPSPEC2ASP to rewrite the input specification into SAT and ASP, respectively. Then, for
each SAT encoding produced by SPEC2SAT, we ran three SAT solvers, namely satz, min-
isat and clasp, to obtain one solution if one exists. For eachof these executions we mea-
sured the time to obtain the solution or the assertion that none exists, thus the sum of the
running times of SPEC2SAT and of the SAT solvers. Moreover, for each ASP encoding
produced by NPSPEC2ASP, we ran two instantiators, namely gringo and DLV (with op-
tion -instantiate). Actually, for DLV we also tested a slightly different version produc-
ing ground programs in numeric format, i.e., DLVw (https://www.mat.unical.it/
ricca/wasp/), and for gringo and the associated solvers we also tested the rewriting into
choice rules. For each of these runs we measured the time required to compute the ground ASP
program, thus the sum of the running times of NPSPEC2ASP and of the instantiator. Finally, for
each ground ASP program, we computed one solution by using clasp, cmodels, DLV and wasp,
and measured the overall time required by the tool-chain. For the miscellanea and csplib2npspec
benchmarks we have also measured the sizes of the instantiated formulas and programs. For
SPEC2SAT, we report the number of clauses in the produced formulaand the number of propo-
sitional variables occurring in it. For DLV and gringo we report the number of ground rules
produced and the number of ground atoms occurring in them. There is a slight difference in the
statistics provided by DLV and gringo: DLV does not count ground atoms (and facts) that were
already found to be true; to be more comparable, we added the number of facts for DLV.

4.2. Benchmarks from the NP-SPEC site

Experimental results concerning themiscellaneaandcsplib2npspecbenchmarks are reported
in Table 1, where the time required by NPSPEC2ASP has been omitted because it is always
below the measurement accuracy. On the other hand, the execution time of SPEC2SAT is higher,

4We did not use gringo 4, as it is still preliminary and at the timeof testing did not provide some of the functionality of gringo3, in
our case the--shift option that we used in the benchmarks.

14

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

sometimes by several orders of magnitude, with a peak ongolombRulerfor which SPEC2SAT
did not terminate on the allotted time. In fact, SPEC2SAT has to compute a ground SAT instance
to pass to a SAT solver, while NPSPEC2ASP outputs a non-ground ASP program. In fact, it is
more meaningful to compare SPEC2SAT to NPSPEC2ASP plus the ASP instantiator to obtain
a ground ASP program. Columns gringo and “DLV inst” report these times, which are however
always less than those of SPEC2SAT. However, we would like to point out that this is just a
rough comparison, as SPEC2SAT obviously performs a different computation (with different
output) than NPSPEC2SAT plus an ASP instantiator. For a similar reason we do not provide a
comparison between SAT and propositional ASP solvers: these systems even start from different
input.

In Table 2 it can be seen that also the number of ground rules produced by the ASP systems
is usually smaller than the number of clauses produced by SPEC2SAT, even if often the num-
ber of ground atoms exceeds the number of propositional variables. These numbers are to be
compared with the same caveat as the timings: one should be aware of the fact that one figure
refers to propositional formulas, the other to logic programming rules, so they are not directly
comparable.

Concerning the computation of one solution from each groundspecification, all considered
SAT and ASP solvers are fast in almost all tests. Among the exceptions are satz forproteinFold-
ing, which exceeds the allotted time, and DLV forjobShopScheduling, whose execution lasted
around 94 seconds. A hard instance isallInterval, for which only satz, DLV and DLVw+wasp
terminated in the allotted time. All other solvers, including gringo+clasp and gringo+cmodels,
exceeded the allotted time, even if the NPSPEC2ASP rewriting and the instantiation by gringo
is produced in less time than the output of SPEC2SAT. This instanceis an outlier in our ex-
periments and we conjecture that it is due to an “unlucky case” for the heuristics adopted by
minisat, clasp and cmodels. In almost all other instances theNPSPEC2ASP toolchains compute
solutions in less than 1 second, while SPEC2SAT toolchains typically require several seconds,
see in particularlangford, lowAutocorrelationandmagicSquare. For this last instance we also
measured a timeout for gringo+cmodels. The size of the programs produced by the ASP instan-
tiators is always smaller than the size of the formulas produced by SPEC2SAT, sometimes by
orders of magnitude, even if the number of ground atoms oftenexceeds the number of proposi-
tional variables. A major cause for the difference in size appear to be aggregates in the problem
specification, which are supported natively by ASP systems, but require expensive rewritings for
SPEC2SAT.

4.3. Benchmarks from the 3rd and 4th ASP Competitions

Figures 4–8 reports the average execution times measured forthe other benchmarks in our
experiment. For three of these benchmarks we also tested handwritten translations for co-

Table 1. Running times on themiscellaneaandcsplib2npspecbenchmarks

Instance
SPEC2SAT NPSPEC2ASP

SPEC2SAT
+satz +minisat +clasp

DLV
DLV

DLVw DLVw

gringo
gringo gringo+

alone inst inst +wasp +clasp cmodels
allInterval 1.14 44.16 267.14 >600 0.00 0.90 0.00 0.10 0.00 >600 >600

bacp 5.25 5.20 5.19 5.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bibd 3.33 3.41 3.34 3.35 0.00 0.00 0.00 0.00 0.00 0.00 0.21

carSequencing 7.61 15.02 7.65 7.61 1.36 1.36 0.90 1.02 0.10 0.10 1.09
factoring 5.15 8.00 5.20 5.95 0.22 0.45 0.33 0.43 0.00 1.01 14.19

golombRuler >600 >600 >600 >600 58.29 58.84 37.45 41.44 7.49 9.51 16.21
jobShopScheduling 36.57 37.82 36.89 37.33 3.19 90.73 1.93 3.84 0.22 1.12 4.72

langford 9.65 10.65 9.80 10.19 0.00 0.79 0.00 0.61 0.00 0.00 16.13
lowAutocorrelation 19.24 20.04 19.29 19.57 N/A∗ N/A∗ N/A∗ N/A∗ 0.00 0.00 0.00

magicSquare 10.34 10.57 10.39 10.34 0.10 18.87 0.10 1.18 0.00 0.04 >600
proteinFolding 113.44 >600 114.11 115.08 N/A∗ N/A∗ N/A∗ N/A∗ 0.91 2.19 7.20
socialGolfer 6.20 6.37 6.23 6.17 0.00 0.10 0.10 0.10 0.00 0.00 0.08

sudoku 2.52 2.53 2.53 2.53 0.10 0.10 0.10 0.20 0.00 0.00 0.05
∗ The instance contains negative integers.

15

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

pris (http://bach.istc.kobe-u.ac.jp/copris/), a state-of-the-art CSP-to-SAT
grounder (Tamura, Taga, Kitagawa, & Banbara, 2009), using both minisat and clasp as SAT
solver backends. Copris was included in order to provide an idea how modern CSP-to-SAT
techniques fare with respect to SPEC2SAT. However, there are some crucial differences be-
tween the language accepted by copris and NP-SPEC, most importantly the apparent absence
of language features supporting inductive definitions in copris (provided by Datalog rules in
NP-SPEC; techniques introduced in (Pelov & Ternovska, 2005; Mariën, Wittocx, Denecker, &
Bruynooghe, 2008) may be used for this purpose, but are not the objective of this paper). On the
other hand, SPEC2SAT also does not support recursive predicate definitions in the NP-SPEC
input (but NPSPEC2ASP does). Plots of copris do not include Scala-to-Java compilation time.

In the graphs, instances are sorted by size and systems have been run up to the first timeout.
In the figures, graphs on top report grounding times, while grounding+solving times are shown
below. A few comments on these graphs are reported below.

Figure 4 reports the result for stable marriage and Figure 5 those for graceful graphs, both
of whose encodings do not include aggregates. Concerning the grounding, gringo and DLV are
significantly more efficient than SPEC2SAT, with gringo performingbetter than DLV in grace-
ful graphs. As for the solving, we first observe that the testedSAT solvers solved the Boolean
formulas produced by SPEC2SAT in less than 1 second. Hence, our comparison of the solving
times is mainly focused on the different ASP solvers. In this respect, for stable marriage we
note that both clasp and cmodels are in general faster on the encoding using choice rules. For
graceful graphs, DLV solved only the first 5 instance sizes, while the other systems performed
significantly better. For this benchmark we also observe thatthe performance of cmodels does
not improve with the encoding using choice rules, while clasp has a different behavior. Con-
cerning copris, we note that it outperforms other systems ongraceful graphs, while the opposite
happens for stable marriage.

For bottle filling we tested an encoding including aggregates. The result for this benchmark
is reported in Figures 6 and 7. Satisfiable and unsatisfiable instances are shown in different
graphs in this case. Concerning the grounding, we observe again a clear advantage of gringo
and DLV over SPEC2SAT. In fact, SPEC2SAT runs into time out for satisfiable instances of size
25 and unsatisfiable instances of size 24. Moreover, we have also to point out that the output of
SPEC2SAT is always an unsatisfiable Boolean formula for these testcases, which appears to be
due to a bug in the instantiation of aggregates. Hence, for the solving phase we only tested ASP
solvers. DLV can solve only the smallest instances, up to grids of size 10-11. Wasp instead can
solve instances up to grids of size 19, and cmodels solved instances of size 22. The performance
of cmodels improves on the rewriting based on choice rules. We finally point out that clasp
outperforms all other systems in this benchmark, solving all tested instances in a few tenths of a

Table 2. Instance sizes of themiscellaneaandcsplib2npspecbenchmarks

Instance
SPEC2SAT

NPSPEC2ASP
DLV DLVw gringo

Clauses Variables Rules Atoms Rules Atoms Rules Atoms
allInterval 21,737 761 9,239 1,639 9239 1639 9,961 1,601

bacp 39,531 1,518 314 316 322 392 436 360
bibd 31,843 4,424 2,684 2,047 2705 2404 4,091 2,279

carSequencing 39,875 786 33,398 219 33428 303 33,506 218
golombRuler N/A∗∗ N/A∗∗ 653,593 96 653,610 96 1,149,561 105

jobShopScheduling 209,495 1,980 156,107 2,052 156,287 2,232 158,087 2,089
langford 130,518 7299 3,736 793 3574 1054 4,015 803

lowAutocorrelation 186,407 5,952 N/A∗ N/A∗ N/A∗ N/A∗ 2,339 1,041
magicSquare 38,564 1,975 5458 872 5773 1085 18,445 14,513

proteinFolding 735,721 669 N/A∗ N/A∗ N/A∗ N/A∗ 520,107 347
socialGolfer 21,600 1,424 11,097 441 11105 561 11,321 442

sudoku 33,825 1,458 24,777 2,545 25,962 2545 25,263 1,736

∗ The instance contains negative integers.
∗∗ The system did not terminate in 30 minutes.

16

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of couples)

Stable marriage - grounding

gringo
dlv

dlvw
gringo (choice)

spec2sat
copris

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of couples)

Stable marriage - grounding+solving

gringo+clasp
gringo+cmodels

dlv
dlvw+wasp

gringo+clasp (choice)
gringo+cmodels (choice)

spec2sat+satz
spec2sat+minisat

spec2sat+clasp
copris+minisat

copris+clasp

Figure 4. Average running time on stable marriage

17

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

 0

 50

 200

 250

 300

 350

 400

 450

 500

 20 25 30 35 40

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

gringo
dlv

dlvw
gringo (choice)

spec2sat
copris

 0

 200

 300

 400

 500

 20 25 30 35

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of nodes)

gringo+clasp
gringo+cmodels

dlv
dlvw+wasp

gringo+clasp (choice)
gringo+cmodels (choice)

spec2sat+satz
spec2sat+minisat

spec2sat+clasp
copris+minisat

copris+clasp

Figure 5. Average running time on graceful graphs

18

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

 0

 50

 200

 250

 300

 350

 400

 450

 500

 5 20 25

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of rows and columns)

lling (sat instances) - grounding

gringo
dlv

dlvw
gringo (choice)

spec2sat

 0

 200

 300

 400

 500

 5 20 25

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of rows and columns)

lling (sat instances) - grounding+solving

gringo+clasp
gringo+cmodels

dlv
dlvw+wasp

gringo+clasp (choice)
gringo+cmodels (choice)

Figure 6. Average running time on satisfiable bottle filling

19

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

 0

 50

 200

 250

 300

 350

 400

 450

 500

 5 20 25

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of rows and columns)

lling (unsat instances) - grounding

gringo
dlv

dlvw
gringo (choice)

spec2sat

 0

 200

 300

 400

 500

 5 20 25

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of rows and columns)

lling (unsat instances) - grounding+solving

gringo+clasp
gringo+cmodels

dlv
dlvw+wasp

gringo+clasp (choice)
gringo+cmodels (choice)

Figure 7. Average running time on unsatisfiable bottle filling

20

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

 0

 2

 4

 6

 20 25 30 35 40

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of nodes)

Hamiltonian cycle - grounding

gringo
dlv

dlvw
gringo (choice)

spec2sat
copris

 0

 200

 300

 400

 500

 600

 20 22 24 26 28

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Size (number of nodes)

dlv

Figure 8. Average running time on Hamiltonian cycle

21

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

second.
The last benchmark we considered is Hamiltonian cycle, whoseresult is reported in Figure 8.

We observe that in this case the grounding phase is easy in general, still showing a sensible
advantage of ASP grounders over SPEC2SAT. For the solving phase wenote that among the
systems without learning, DLV performs better than satz, while among the other systems we
observe that clasp, cmodels and wasp solved instances up to 24 nodes, and the same holds
for minisat on the output of SPEC2SAT. We also remark that clasp was in general faster than
cmodels and wasp, and its performance is even better on the rewriting based on choice rules. In
fact, on the encoding with choice rules, clasp solved instances up to 26 nodes. A similar result
has been obtained by clasp on the output of SPEC2SAT, with runningtimes often smaller than
those obtained on the output of NPSPEC2ASP. Concerning copris, wenote that it is in general
faster than other systems, solving instances up to 28 nodes.

5. Conclusion

In this paper we have presented a transformation of NP-SPEC programs into ASP. The transla-
tion is modular and not complex at all, allowing for very efficient transformations. Compared to
the previously available transformation into Boolean satisfiability, there are a number of crucial
differences: While our transformation is from a formalism with variables into another formalism
with variables, Boolean satisfiability of course does not allow for object variables. Therefore any
transformation to that language has to do an implicit instantiation. It is obvious that instantia-
tion can be very costly, and thus using sophisticated instantiation methods is usually of utmost
importance. However, optimization methods for instantiation are often quite involved and not
easy to implement, and therefore adopting them in a transformation is detrimental. After all,
the appeal of transformations are usually their simplicityand the possibility to re-use existing
software after the transformation.

Our transformation method does just that; by not instantiating it is possible to re-use exist-
ing instantiators inside ASP systems, many of which use quitesophisticated techniques like join
ordering heuristics, dynamic indexing and many more. We have provided a prototype implemen-
tation that showcases this advantage. Already on rather small examples that were used previously
for evaluating NP-SPEC implementations a considerable advantage of our method can be ob-
served. This impression is confirmed by more systematic experiments involving domains from
ASP competitions reformulated for NP-SPEC. For these domains, weperformed a scalability
analysis that clearly show a better asymptotic behavior forthe tool chain involving ASP than
the tool chain involving SAT. This finding is independent of the concrete ASP and SAT systems
considered. However, the experiments also clearly highlight performance differences for ASP
systems.

There is a second aspect of our work, which regards ASP. As can beseen in Section 3, the
translation ofPermutation either gives rise to possibly many integrity constraints orone with
an aggregate. In any case, all current ASP instantiators willmaterialize all associations between
tuples of the domain definition and the permutation identifiers, even if the identifiers are not
really important for solving the problem. This means that there are obvious symmetries in the
instantiated program. There exist proposals for symmetry breaking in ASP (e.g. (Drescher, Tif-
rea, & Walsh, 2011)), but they typically employ automorphism detection. We argue that in cases
like this, a statement likePermutation, Partition, or IntFunc would make sense as a language
addition for ASP solvers, which could exploit the fact that the permutation identifiers introduce
a particular known symmetry pattern that does not have to be detected by any external tool.

22

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

Acknowledgements

Supported by Regione Calabria and EU under POR Calabria FESR 2007-2013 within the PIA
project of DLVSYSTEM s.r.l., and by National Group for Scientific Computation (GNCS-
INDAM).

References

Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G., . . . Xiao, G. (2013).
The fourth answer set programming competition: Preliminary report. In P. Cabalar &
T. C. Son (Eds.),12th international conference on logic programming and nonmonotonic
reasoning (lpnmr 2013)(Vol. 8148, pp. 42–53). Springer Berlin/Heidelberg.

Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., & Terracina, G. (2011). The disjunctive
datalog system DLV. In G. Gottlob (Ed.),Datalog 2.0(Vol. 6702, pp. 282–301). Springer
Berlin/Heidelberg.

Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a Theory of Declarative Knowledge.
In J. Minker (Ed.),Foundations of Deductive Databases and Logic Programming(pp.
89–148). Washington DC: Morgan Kaufmann Publishers, Inc.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative ProblemSolving.
Cambridge University Press.

Ben-Eliyahu, R., & Dechter, R. (1994). Propositional Semantics for Disjunctive Logic Pro-
grams.Annals of Mathematics and Artificial Intelligence, 12, 53–87.

Cadoli, M., Ianni, G., Palopoli, L., Schaerf, A., & Vasile, D. (2000). An Executable Specification
Language for Solving all the Problems in NP.Computer Languages, 26(2/4), 165–195.

Cadoli, M., Mancini, T., & Patrizi, F. (2006). SAT as an effective solving technology for con-
straint problems. In F. Esposito, Z. W. Ras, D. Malerba, & G. Semeraro (Eds.),Founda-
tions of intelligent systems, 16th international symposium, ismis 2006, bari, italy, septem-
ber 27-29, 2006, proceedings(Vol. 4203, pp. 540–549). Springer.

Cadoli, M., Palopoli, L., Schaerf, A., & Vasile, D. (1999). NP-SPEC:An executable specifi-
cation language for solving all problems in NP. InProceedings of the first international
workshop on practical aspects of declarative languages(Vol. 1551, pp. 16–30). Springer.

Cadoli, M., & Schaerf, A. (2005). Compiling problem specifications into SAT. Artificial
Intelligence, 162(1–2), 89–120.

Calimeri, F., Ianni, G., & Ricca, F. (2014). The third open answer set programming com-
petition. TPLP, 14(1), 117–135. Retrieved fromhttp://dx.doi.org/10.1017/
S1471068412000105 doi:

Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., . . . Veltri, P. (2011). The
third answer set programming competition: Preliminary report of the system competition
track. In J. Delgrande & W. Faber (Eds.),11th international conference on logic pro-
gramming and nonmonotonic reasoning (lpnmr 2011)(Vol. 6645, p. 388-403). Springer
Berlin/Heidelberg. Retrieved fromhttp://dx.doi.org/10.1007/978-3-642
-20895-9 46

Dodaro, C., Alviano, M., Faber, W., Leone, N., Ricca, F., & Sirianni, M. (2011). The birth
of a WASP: Preliminary report on a new ASP solver. In F. Fioravanti (Ed.),26th italian
conference on computational logic (cilc 2011)(Vol. 810, pp. 99–113). Sun SITE Central
Europe. Retrieved fromhttp://ceur-ws.org/Vol-810/paper-l06.pdf

Drescher, C., Tifrea, O., & Walsh, T. (2011). Symmetry-breaking answer set solving.AI
Communications, 24(2), 177–194.

Eén, N., & S̈orensson, N. (2003). An extensible SAT-solver. InSat(pp. 502–518).

23

October 9, 2014 Journal of Experimental & Theoretical Artificial Intelligence jetai

Eiter, T., Fink, M., & Woltran, S. (2007). Semantical Characterizations and Complexity of
Equivalences in Stable Logic Programming.ACM Transactions on Computational Logic,
8(3), 1–53.

Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., & Ielpa, G. (2008). Design and implementation
of aggregate functions in the dlv system. ,8(5–6), 545–580. doi:

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., & Schneider, M. T. (2011).
Potassco: The potsdam answer set solving collection.AI Communications, 24(2), 107–
124.

Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (2007, January). Conflict-driven answer
set solving. InTwentieth International Joint Conference on Artificial Intelligence (IJCAI-
07) (pp. 386–392). Morgan Kaufmann Publishers.

Gebser, M., Schaub, T., & Thiele, S. (2007, May). Gringo : A new grounder for answer set
programming. In C. Baral, G. Brewka, & J. Schlipf (Eds.),Logic Programming and
Nonmonotonic Reasoning — 9th International Conference, LPNMR’07 (Vol. 4483, pp.
266–271). Tempe, Arizona: Springer Verlag. doi:

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 9, 365–385.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S., & Scarcello, F. (2006, July).
The DLV System for Knowledge Representation and Reasoning.ACM Transactions on
Computational Logic, 7(3), 499–562.

Li, C. M. (1999). A constraint-based approach to narrow search trees for satisfiability.Informa-
tion Processing Letters, 71(2), 75–80.

Lierler, Y., & Maratea, M. (2004, January). Cmodels-2: SAT-based Answer Set Solver Enhanced
to Non-tight Programs. In V. Lifschitz & I. Niemelä (Eds.),Proceedings of the 7th Inter-
national Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR-7)
(Vol. 2923, pp. 346–350). Springer.

Mariën, M., Wittocx, J., Denecker, M., & Bruynooghe, M. (2008). SAT(ID): satisfiability
of propositional logic extended with inductive definitions.In H. K. Büning & X. Zhao
(Eds.),Theory and applications of satisfiability testing - SAT 2008,11th international
conference, SAT 2008, guangzhou, china, may 12-15, 2008. proceedings(Vol. 4996, pp.
211–224). Springer. Retrieved fromhttp://dx.doi.org/10.1007/978-3-540
-79719-7 20 doi:

Minker, J. (Ed.). (1988).Foundations of Deductive Databases and Logic Programming. Wash-
ington DC: Morgan Kaufmann Publishers, Inc.

Pelov, N., & Ternovska, E. (2005). Reducing inductive definitions to propositional satisfiabil-
ity. In M. Gabbrielli & G. Gupta (Eds.),Logic programming, 21st international confer-
ence, ICLP 2005, sitges, spain, october 2-5, 2005, proceedings(Vol. 3668, pp. 221–234).
Springer. Retrieved fromhttp://dx.doi.org/10.1007/11562931 18 doi:

Tamura, N., Taga, A., Kitagawa, S., & Banbara, M. (2009). Compiling finite linear csp into sat.
Constraints, 14(2), 254-272.

Van Gelder, A. (1988). Negation as Failure Using Tight Derivations for General Logic Programs.
In J. Minker (Ed.),Foundations of Deductive Databases and Logic Programming(pp.
1149–1176). Washington DC: Morgan Kaufmann Publishers, Inc.

24

