580 research outputs found

    Effects of Excess Dietary Selenite on Lead Toxicity in Sheep

    Get PDF
    The hypothesis that excess dietary selenite ameliorates lead (Pb) toxicosis in domestic sheep was tested. Twenty 6-8-yr-old ewes fed alfalfa pellets were assigned to the following treatments: (1) control; (2) 9.8 mg Pb/kg body weight (b.w.)/d as PbCO3; (3) 3 mg Se/anirnal/d as Na2SeO3?·5H2O; or (4) a combination of treatments 2 and 3. The gelatin-encapsulated salts were given orally. The study was terminated on d 104, by which time three animals in the Pb group and all five animals in the Pb + Se group had died. All remaining animals were slaughtered on d 104. Lead and Se concentrations were determined in six biweekly-collected blood samples and in soft tissues and bone. Sheep on the control and Se treatments had similar feed intakes, body weights, and tissue Pb levels. Those in the Pb + Se group had lower feed intake, but higher blood Pb values compared with the Pb group. Feeding either element increased (P < 0.05) the concentration of that element in blood, kidney, liver, spleen, and bone. Muscle-Pb concentrations were not affected (P < 0.05) by treatment. Selenium concentrations in kidney, liver, and muscle were greater (P < 0.05), whereas those in heart were less (P < 0.05) for the Pb + Se group than for the Se Group. Clinical signs associated with Pb toxicosis noted in other animals were not observed in the poisoned sheep in this study. Selenite did not protect sheep against Pb toxicity and likely served as a synergistic factor

    Defining the origins of multiple emission/excitation in rhenium-bisthiazole complexes

    Get PDF
    The underlying mechanism of the unusual emissive behavior of [Re(CO) 3 -1,1-bis-4-thiazole-(1,4)-diaminobutane)] bromide (4-BT) has been investigated. Synthesis and spectroscopic characterization of structurally similar isomers ([Re(CO) 3 -1,1-bis-2-thiazole-(1,4)-diaminobutane)] bromide (2-BT)) and the location of triplet states, solid state and low temperature spectroscopic measurements, and DFT calculations show that the photophysical properties are not due to photoisomerization as previously hypothesized. The results show that the unusual emissive behavior is not observed in structural isomers, is specific to the previously reported complex, 4-BT, and may arise from vibrational energy relaxation and vibrational cooling. Translation of the unusual emissive behavior to the solid state offers an interesting platform allowing this complex to be potentially utilized as a probe, sensor or photonic device

    Plasma functionalization of AFM tips for measurement of chemical interactions

    Get PDF
    In this paper, a new, fast, reproducible technique for atomic force microscopy (AFM) tips functionalization used for chemical interaction measurements is described. Precisely, the deposition of an aminated precursor is performed through plasma-enhanced chemical vapor deposition (PECVD) in order to create amine functional groups on the AFM tip and cantilever. The advantages of the precursor, aminopropyltriethoxysilane (APTES), were recently demonstrated for amine layer formation through PECVD deposition on polymeric surfaces. We extended this procedure to functionalize AFM probes. Titration force spectroscopy highlights the successful functionalization of AFM tips as well as their stability and use under different environmental conditions. © 2010 Elsevier Inc

    PECVD coatings for functionalization of point-of-care biosensor surfaces

    Get PDF
    In early stage disease diagnosis, an accurate and reliable measurement of low concentrations of specific biomarkers is a key need. The detection technique requires the reaction of an antibody, which is generally covalently bound to the biosensor platform, with its antigen. The application of Zeonor ®, a cyclo olefin copolymer (COP) with very low autofluorescence, good optical properties and high precision molding characteristics, as a biosensor platform has been demonstrated recently. Highly reproducible, industrial scale surface chemical modification of the COP plastic for covalent attachment of the biomolecules for specific recognition of the target, together with low non-specific binding of other proteins that may be present in the sample is a key challenge. In this work, the applicability of plasma enhanced chemical vapor deposition (PECVD) process has been demonstrated by depositing varying surface functionalities including amines, carboxylic, mercapto, epoxy and polyethylene glycol functionalities. The plasma functionalized coatings thus created possess both reactive and repellent sites on the biosensor chip, allowing the chip to be configured either for fluorescence or light scattering-based detection or for label-free surface plasmon resonance detection techniques. The versatility of the gas phase deposition process for building sequential chemistries on low cost and disposable plastic chips is presented in detail. © 2011 Elsevier Ltd. All rights reserved

    Sex dependent risk factors for mortality after myocardial infarction : individual patient data meta-analysis

    Get PDF
    Background. Although a number of risk factors are known to predict mortality within the first years after myocardial infarction, little is known about interactions between risk factors, whereas these could contribute to accurate differentiation of patients with higher and lower risk for mortality. This study explored the effect of interactions of risk factors on all-cause mortality in patients with myocardial infarction based on individual patient data meta-analysis. Methods. Prospective data for 10,512 patients hospitalized for myocardial infarction were derived from 16 observational studies (MINDMAPS). Baseline measures included a broad set of risk factors for mortality such as age, sex, heart failure, diabetes, depression, and smoking. All two-way and three-way interactions of these risk factors were included in Lasso regression analyses to predict time-to-event related all-cause mortality. The effect of selected interactions was investigated with multilevel Cox regression models. Results. Lasso regression selected five two-way interactions, of which four included sex. The addition of these interactions to multilevel Cox models suggested differential risk patterns for males and females. Younger women (ag

    Recent developments in planet migration theory

    Full text link
    Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both torque components for planets on circular orbits, with a special emphasis on the various processes that give rise to additional, large components of the corotation torque, and those contributing to the saturation of this torque. These additional components of the corotation torque could help address the shortcomings that have recently been exposed by models of planet population syntheses. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physic

    The CORDEX Flagship Pilot Study in southeastern South America: a comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events

    Get PDF
    The aim of this work is to present preliminary results of the statistical and dynamical simulations carried out within the framework of the Flagship Pilot Study in southeastern South America (FPS-SESA) endorsed by the Coordinated Regional Climate Downscaling Experiments (CORDEX) program. The FPS-SESA initiative seeks to promote inter-institutional collaboration and further networking with focus on extreme rainfall events. The main scientific aim is to study multi-scale processes and interactions most conducive to extreme precipitation events through both statistical and dynamical downscaling techniques, including convection-permitting simulations. To this end, a targeted experiment was designed considering the season October 2009 to March 2010, a period with a record number of extreme precipitation events within SESA. Also, three individual extreme events within that season were chosen as case studies for analyzing specific regional processes and sensitivity to resolutions. Four dynamical and four statistical downscaling models (RCM and ESD respectively) from different institutions contributed to the experiment. In this work, an analysis of the capability of the set of the FPS-SESA downscaling methods in simulating daily precipitation during the selected warm season is presented together with an integrated assessment of multiple sources of observations and available CORDEX Regional Climate Model simulations. Comparisons among all simulations reveal that there is no single model that performs best in all aspects evaluated. The ability in reproducing the different features of daily precipitation depends on the model. However, the evaluation of the sequence of precipitation events, their intensity and timing suggests that FPS-SESA simulations based on both RCM and ESD yield promising results. Most models capture the extreme events selected, although with a considerable spread in accumulated values and the location of heavy precipitation.Thanks to CORDEX for endorsing the FPS-SESA. This work was supported by the University of Buenos Aires 2018- 20020170100117BA grant; JMG, MLB, SAS, RPR funding from the Spanish Research Council (CSIC) I-COOP+ Program “reference COOPB20374”. JMG, JF and AL-G acknowledge support from the Spanish R&D Program through projects MULTI-SDM (CGL2015-66583-R) and INSIGNIA (CGL2016-79210-R), co-funded by the European Regional Development Fund (ERDF/FEDER). AL-G acknowledges support from the Spanish R&D Program through the predoctoral contract BES-2016-078158. Universidad de Cantabria simulations have been carried out on the Altamira Supercomputer at the Instituto de Física de Cantabria (IFCA-CSIC), member of the Spanish Supercomputing Network. MB acknowledges support from the Simons Associateship of the Abdus Salam International Centre for Theoretical Physics. RH acknowledges support from the project LTT17007 funded by the Ministry of Education, Youth, and Sports of the Czech Republic

    Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares

    Full text link
    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the Topical Issue on Solar and Stellar Flare

    Multi-layered plasma-polymerized chips for SPR-based detection

    Get PDF
    Figure Presented: The surface functionalization of a noble metal is crucial in a surface plasmon resonance-based biomolecular detection system because the interfacial coating must retain the activity of immobilized biomolecules while enhancing the optimal loading. We present here a one-step, room-temperature, high-speed, gas-phase plasma polymerization process for functionalizing gold substrates using siloxane as an adhesion layer and acrylic acid as a functional layer. Siloxane- and thiol-based coatings were compared for their performance as adhesion and the interfacial layer for subsequent functionalization. An in situ sequential deposition of siloxane and acrylic acid resulted in a 7-fold increase in carboxylic functionality surfacial content compared to films deposited with thiol-containing precursors. Grading of the layer composition achieved as a consequence of ion-induced mixing on the surface coating under the application of the plasma is confirmed through secondary ion mass spectroscopic studies. DNA hybridization assays were demonstrated on gold/glass substrates using surface plasmon enhanced ellipsometry and the applicability of this coating for protein immunoassays were demonstrated with plasma functionalized gold/plastic substrates in Biacore 3000 SPR instrument. © 2011 American Chemical Society

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
    corecore