560 research outputs found

    Analysis of the economic impact of large-scale deployment of biomass resources for energy and materials in the Netherlands : macro-economics biobased synthesis report

    Get PDF
    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. The results of the synthesis of the modelling work are presented in this report

    Improved Retroviral Packaging Lines Derived from Spleen Necrosis Virus

    Get PDF
    AbstractUsing highly efficient gene expression vectors, we constructed new retroviral packaging lines derived from spleen necrosis virus. Core proteins are expressed from the murine leukemia virus promoter and enhancer followed by the tripartite leader sequence of an adenovirus Using different plasmids for envelope expression, we found that the efficiency of vector transduction is dependent on the level of gag-pol expression. The level of envelope expression did not have a measurable impact on vector virus titers The new helper cell lines do not contain any sequences homologous to vector genomes. They transduce standard retrovirus vectors with titers up to 105 colony forming units per milliliter of supernatant tissue culture medium. No replication-competent virus was observed

    Phylogenetic informativeness reconciles ray-finned fish molecular divergence times

    Get PDF
    BACKGROUND: Discordance among individual molecular age estimates, or between molecular age estimates and the fossil record, is observed in many clades across the Tree of Life. This discordance is attributed to a variety of variables including calibration age uncertainty, calibration placement, nucleotide substitution rate heterogeneity, or the specified molecular clock model. However, the impact of changes in phylogenetic informativeness of individual genes over time on phylogenetic inferences is rarely analyzed. Using nuclear and mitochondrial sequence data for ray-finned fishes (Actinopterygii) as an example, we extend the utility of phylogenetic informativeness profiles to predict the time intervals when nucleotide substitution saturation results in discordance among molecular ages estimated. RESULTS: We demonstrate that even with identical calibration regimes and molecular clock methods, mitochondrial based molecular age estimates are systematically older than those estimated from nuclear sequences. This discordance is most severe for highly nested nodes corresponding to more recent (i.e., Jurassic-Recent) divergences. By removing data deemed saturated, we reconcile the competing age estimates and highlight that the older mtDNA based ages were driven by nucleotide saturation. CONCLUSIONS: Homoplasious site patterns in a DNA sequence alignment can systematically bias molecular divergence time estimates. Our study demonstrates that PI profiles can provide a non-arbitrary criterion for data exclusion to mitigate the influence of homoplasy on time calibrated branch length estimates. Analyses of actinopterygian molecular clocks demonstrate that scrutiny of the time scale on which sequence data is informative is a fundamental, but generally overlooked, step in molecular divergence time estimation

    THE INFLUENCE OF AN INNOVATIVE LOCOMOTOR STRATEGY ON THE PHENOTYPIC DIVERSIFICATION OF TRIGGERFISH (FAMILY: BALISTIDAE)

    Get PDF
    Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species

    Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting.

    Get PDF
    Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accepted hypothesis that cichlids are an ancient group whose major biogeographic patterns arose from Gondwanan vicariance. Although the Early Cretaceous (ca 135 Ma) divergence of living cichlids demanded by the vicariance model now represents a key calibration for teleost molecular clocks, this putative split pre-dates the oldest cichlid fossils by nearly 90 Myr. Here, we provide independent palaeontological and relaxed-molecular-clock estimates for the time of cichlid origin that collectively reject the antiquity of the group required by the Gondwanan vicariance scenario. The distribution of cichlid fossil horizons, the age of stratigraphically consistent outgroup lineages to cichlids and relaxed-clock analysis of a DNA sequence dataset consisting of 10 nuclear genes all deliver overlapping estimates for crown cichlid origin centred on the Palaeocene (ca 65-57 Ma), substantially post-dating the tectonic fragmentation of Gondwana. Our results provide a revised macroevolutionary time scale for cichlids, imply a role for dispersal in generating the observed geographical distribution of this important model clade and add to a growing debate that questions the dominance of the vicariance paradigm of historical biogeography

    An assessment of sampling biases across studies of diel activity patterns in marine ray-finned fishes (Actinopterygii)

    Get PDF
    Author Posting. © University of Miami - Rosenstiel School of Marine and Atmospheric Science, 2016. This article is posted here by permission of University of Miami - Rosenstiel School of Marine and Atmospheric Science for personal use, not for redistribution. The definitive version was published in Bulletin of Marine Science 93 (2017): 611-639, doi:10.5343/bms.2016.1016.Understanding the promotion and regulation of circadian rhythms in marine fishes is important for studies spanning conservation, evolutionary biology, and physiology. Given numerous challenges inherent to quantifying behavioral activity across the full spectrum of marine environments and fish biodiversity, case studies offer a tractable means of gaining insights or forecasting broad patterns of diel activity. As these studies continue to accumulate, assessing whether, and to what extent, the cumulatively collected data are biased in terms of geography, habitat, or taxa represents a fundamentally important step in the development of a broad overview of circadian rhythms in marine fish. As such investigations require a phylogenetic framework, general trends in the phylogenetic sampling of marine fishes should be simultaneously assessed for biases in the sampling of taxa and trait data. Here, we compile diel activity data for more than 800 marine species from more than five decades of scientific studies to assess general patterns of bias. We found significant geographic biases that largely reflect a preference toward sampling warm tropical waters. Additionally, taxonomic biases likewise reflect a tendency toward conspicuous reef associated clades. Placing these data into a phylogenetic framework that includes all known marine fishes revealed significant under-dispersion of behavioral data and taxon sampling across the whole tree, with a few subclades exhibiting significant over-dispersion. In total, our study illuminates substantial gaps in our understanding of diel activity patterns and highlights significant sampling biases that have the potential to mislead evolutionary or ecological analyses.Partial funding was provided by the North Carolina Museum of Natural Sciences

    The effects of climate change on Australia’s only endemic Pokémon: Measuring bias in species distribution models

    Get PDF
    1. Species distribution models (SDMs) are frequently used to predict the effects of climate change on species of conservation concern. Biases inherent in the process of constructing SDMs and transferring them to new climate scenarios may result in undesirable conservation outcomes. We explore these issues and demonstrate new methods to estimate biases induced by the design of SDM studies. We present these methods in the context of estimating the effects of climate change on Australia\u27s only endemic Pokémon.2. Using a citizen science dataset, we build species distribution models for Garura kangaskhani to predict the effects of climate change on the suitability of habitat for the species. We demonstrate a novel Monte Carlo procedure for estimating the biases implicit in a given study design, and compare the results seen for Pokémon to those seen from our Monte Carlo tests as well as previous studies in the same region using both simulated and real data.3. Our models suggest that climate change will impact the suitability of habitat for G. kangaskhani, which may compound the effects of threats such as habitat loss and their use in blood sport. However, we also find that using SDMs to estimate the effects of climate change can be accompanied by biases so strong that the data themselves have minimal impact on modelling outcomes. 4. We show that the direction and magnitude of bias in estimates of climate change impacts are affected by every aspect of the modelling process, and suggest that bias estimates should be included in future studies of this type. Given the widespread use of SDMs, systemic biases could have substantial financial and opportunity costs. By demonstrating these biases and presenting a novel statistical tool to estimate them, we hope to provide a more secure future for G. kangaskhani and the rest of the world\u27s biodiversity

    Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes

    Get PDF
    The Southern Ocean around Antarctica is among the most rapidly warming regions on Earth, but has experienced episodic climate change during the past 40 million years. It remains unclear how ancient periods of climate change have shaped Antarctic bio-diversity. The origin of antifreeze glycoproteins (AFGPs) in Antarctic notothenioid fishes has become a classic example of how the evolution of a key innovation in response to climate change can drive adaptive radiation. By using a time-calibrated molecular phylogeny of notothenioids and reconstructed paleoclimate, we demonstrate that the origin of AFGP occurred between 42 and 22 Ma, which includes a period of global cooling approximately 35 Ma. However, the most species-rich lineages diversified and evolved significant ecological differences at least 10 million years after the origin of AFGPs, during a second cooling event in the Late Miocene (11.6-5.3 Ma). This pattern indicates that AFGP was not the sole trigger of the notothenioid adaptive radiation. Instead, the bulk of the species richness and ecological diversity originated during the Late Miocene and into the Early Pliocene, a time co-incident with the origin of polar conditions and increased ice activity in the Southern Ocean. Our results challenge the current understanding of the evolution of Antarctic notothenioids suggesting that the ecological opportunity that underlies this adaptive radiation is not linked to a single trait, but rather to a combination of freeze avoidance offered by AFGPs and subsequent exploitation of new habitats and open niches created by increased glacial and ice sheet activity.Fil: Near, Thomas. University of Yale; Estados UnidosFil: Dornburg, Alex. University of Yale; Estados UnidosFil: Kuhn, K.. University of Yale; Estados UnidosFil: Eastman,Joseph T.. Ohio State University; Estados UnidosFil: Pennington, Jillian N.. University of Yale; Estados UnidosFil: Patarnello, Tomaso. Università di Padova; ItaliaFil: Zane, Lorenzo. Università di Padova; ItaliaFil: Fernandez, Daniel Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Jones, Christopher D.. National Oceanic And Atmospheric Administration; Estados Unido
    corecore