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ABSTRACT.—Understanding the promotion and 
regulation of circadian rhythms in marine fishes is important 
for studies spanning conservation, evolutionary biology, 
and physiology. Given numerous challenges inherent to 
quantifying behavioral activity across the full spectrum 
of marine environments and fish biodiversity, case studies 
offer a tractable means of gaining insights or forecasting 
broad patterns of diel activity. As these studies continue 
to accumulate, assessing whether, and to what extent, the 
cumulatively collected data are biased in terms of geography, 
habitat, or taxa represents a fundamentally important step 
in the development of a broad overview of circadian rhythms 
in marine fish. As such investigations require a phylogenetic 
framework, general trends in the phylogenetic sampling of 
marine fishes should be simultaneously assessed for biases 
in the sampling of taxa and trait data. Here, we compile 
diel activity data for more than 800 marine species from 
more than five decades of scientific studies to assess general 
patterns of bias. We found significant geographic biases that 
largely reflect a preference toward sampling warm tropical 
waters. Additionally, taxonomic biases likewise reflect a 
tendency toward conspicuous reef associated clades. Placing 
these data into a phylogenetic framework that includes all 
known marine fishes revealed significant under-dispersion 
of behavioral data and taxon sampling across the whole 
tree, with a few subclades exhibiting significant over-
dispersion. In total, our study illuminates substantial gaps 
in our understanding of diel activity patterns and highlights 
significant sampling biases that have the potential to mislead 
evolutionary or ecological analyses.
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Containing more than 30,000 described species (Eschmeyer and Fricke 2015), ray-
finned fishes (Actinopterygii) represent what is arguably one of the most successful 
radiations in the evolutionary history of vertebrates. Half of this diversity, or one out 
of every four living vertebrate species, is found within the world’s oceans (Carrete 
Vega and Wiens 2012) across a mosaic of habitats ranging from coral reefs to the 
polar seas (Nelson et al. 2016). This diversity and ubiquity of ray-finned fishes repre-
sents a wealth of information about the evolutionary process. Over the past several 
decades, continual advances in survey technology and efforts (Walker et al. 2000, 
Devine et al. 2006, Makris et al. 2006, Bollinger and Kline 2015, McIntyre et al. 
2015) coupled with increased resolution of a ray-finned fish tree of life (Near et al. 
2012b, 2013, Betancur-R et al. 2013, Miya et al. 2013, Rabosky et al. 2013, Sanciangco 
et al. 2016), suggest that the 21st century may be the time that some of the most vex-
ing questions in ichthyology become answerable. However, the majority of data col-
lected are often restricted to diurnal species. It is therefore unclear if this potential 
temporal bias is leaving our understanding of the ecology and evolution of nocturnal 
ray-finned fishes in the dark.

It is well known that day/light cycles act as zeitgebers for the circadian rhythms of 
marine fishes (Hobson 1965, 1975, Helfman 1986, Naylor 2005), lending support for 
the hypothesis that time (and its corresponding light cycle) acts as a primary com-
ponent of the ecological niche in animals (Hut et al. 2012). Evidence for diversifica-
tion dynamics corresponding to a “temporal niche” is readily apparent in the eyes of 
marine fishes, where adaptations to dim-light conditions have constrained optical 
and trophic diversity (Goatley et al. 2010, Schmitz and Wainwright 2011). True noc-
turnality has evolved independently within dozens of marine fish families (Pulcini 
et al. 2008, Goatley et al. 2010, Schmitz and Wainwright 2011, Brandl and Bellwood 
2014), making ray-finned fishes an ideal clade with which to investigate the mecha-
nisms underlying temporal niche transitions. Additionally, the local abundance of 
many species also makes them an excellent system for assessing how human-driven 
disturbances, such as light pollution or contaminants, affect circadian rhythms in 
wild species (Chepesiuk 2009, Gallaway et al. 2010). While the vast species-richness 
of marine ray-finned fishes presents a potential boon to research, it also presents the 
inordinate challenge of first quantifying activity patterns across a quarter of all living 
vertebrates.

Aside from the sheer number of species, challenges inherent to studying behavior 
in aquatic environments have presented major hurdles to quantifying diel activity 
patterns in marine fishes. These challenges range from safety limitations in scientific 
diving (Dardeau and McDonald 2007) to biases in species detection rates produced 
by differences in the efficiency of survey methods across taxa (Willis et al. 2000). Yet 
despite such challenges, the past 50 yrs have yielded a constant stream of insights 
into fish behavioral patterns (Hobson 1965, 1975, Lobel 1978, Horn 1980). In par-
ticular, technical improvements, such as the advent of cheaper and smaller acoustic 
transmitters for radio telemetry, have catalyzed a pulse of studies over the last two 
decades (Meyer et al. 2000, Arendt et al. 2001, Heupel et al. 2006, Fox and Bellwood 
2011). As studies accumulate and we move toward a broader understanding of diel 
cycles in marine fishes, an overview of the sampling efforts underlying this research 
represents an important step in assessing what potential biases have accumulated 
along with these data.
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Given the heterogeneity in logistical challenges associated with sampling different 
geographic regions, habitats, or taxa, research efforts to date should be expected to 
reflect a certain level of sampling bias. However, the extent of such potential biases 
remains unknown. This uncertainty raises numerous pressing questions. For exam-
ple, asking “What regions or habitats are in the highest need of study?” is critical if 
we are to develop a broad overview of the circadian rhythms of marine fish. However, 
even within heavily studied habitats or regions, it is important to evaluate if there is 
a bias in which members of the community are included in the study. Likewise, there 
may be a global bias where either larger fishes or fishes feeding in higher trophic 
levels, such as the majority of commercially important species (Brodeur and Pearcy 
1987, Brulé et al. 1994, Rooker 1995, Amundsen et al. 1999), are disproportionately 
studied, while smaller fishes that form the critical links in community food webs 
remain understudied. Answering such questions will not only provide insights into 
potential pitfalls that might occur when drawing generalities from existing data, but 
will also optimize the efficiency of ongoing and future work.

Concomitant with answers to such questions should be an assessment of whether 
available data depict any biases that may mislead comparative phylogenetic investi-
gations. Are certain clades more represented than others? Are there biases correlated 
with ecology or geography within clades? With the rapid accumulation of phyloge-
netic studies resolving the backbone (Holcroft 2005, Holcroft and Wiley 2008, Near 
et al. 2012b, 2013, Betancur-R et al. 2013, Sanciangco et al. 2016), intra-ordinal (Miya 
et al. 2013, Chen et al. 2014, Dornburg et al. 2015a, Eytan et al. 2015, Near et al. 2015), 
and intra-familial relationships (Near et al. 2012a, Santini et al. 2013a,b, Dornburg et 
al. 2015b, Santini and Carnevale 2015) across most of the ray-finned fish tree of life, 
addressing such questions has become a possibility and represents an important first 
step toward understanding the evolution of circadian rhythms in vertebrates.

Here, we compile the results of 68 published studies of diel activity patterns across 
all marine ray-finned fishes to assess patterns of sampling bias. Specifically, we as-
sess if body size, trophic ecology, geography, depth, or taxonomy are correlated with 
significant sampling biases. Integrating our results into a phylogenetic framework 
representing all epipelagic marine and brackish fishes, we further assess patterns of 
phylogenetic over- and under-dispersion in sampling both across the entire tree and 
between clades. In total, our results reveal several sampling biases across marine 
fishes that have not previously been acknowledged, highlighting several deficits in 
our knowledge of marine fish activity patterns.

Methods

Data Acquisition.—We restricted our survey of the diel activity literature to 
species sampled in the 7822 taxa tree from Rabosky et al. (2013), which included 
3703 marine fish lineages. This tree is currently the largest assembled phylogeny of 
ray-finned fishes to date and is based on a supermatrix of 13 genes constructed using 
a mega-phylogeny approach. Although this tree includes only a fraction of the total 
diversity of marine fishes, using this tree as a taxonomic guide makes attempting a 
survey of the published literature a tractable problem. For example, given the sheer 
number of marine ray-finned fishes, only 3 min of time spent querying the literature 
per species would require >800 hrs of total search time, yet obviously still not yield 
an adequate survey of published work. Additionally, this tree contains the majority 
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of marine fishes that have sequence data available on GenBank. Molecular phyloge-
netic studies often attempt to obtain as nearly complete taxon sampling as possible 
for major clades (e.g., “families” or “orders”), and make use of the wealth of genomic 
resources archived in natural history collections worldwide. This taxon sampling 
strategy makes it unlikely that a large number of diel activity pattern studies have 
been conducted on species not sampled in this phylogeny. Therefore, we believe the 
taxon sampling of this tree represents an opportune guide for our study.

Surveys of published studies were conducted using Google web search, Google 
Scholar, Google Books, FishBase, and the ISI Web of Knowledge portal. Combinations 
of the following keywords were entered as search terms: fish, diel, activity pattern, 
marine, ocean, teleost, foraging, feeding, nocturnal, diurnal, crepuscular, night, 
reef, sleep, active, and activity. In addition to these keywords, the above searches 
were repeated with combinations of higher taxonomic terms as keywords (e.g., 
Tetraodonitoformes or Balistidae), as well as randomly selected individual spe-
cies names from the topology of Rabosky et al. (2013). Our list of keywords was 
restricted to English and undoubtedly did not contain every possible keyword that 
could produce search engine hits for studies containing data on diel activity pat-
tern. Regardless, the resulting survey spanned hundreds of fish species and a host of 
sampling methods ranging from telemetry to scuba-based visual census methods. 
The diversity of studies obtained reflects the use of the above search words in titles, 
abstracts, keywords, and other searchable portions of documents so that additional 
terms such as “telemetry” yielded no significant increase of hits that did not also 
include terms such as “diel” or “nocturnal.” As such, we argue that this approach to 
surveying the literature represents a reasonable approximation of data patterns in 
published studies concerning diel activity patterns.

Although many juvenile and mesopelagic fishes undergo daily vertical migra-
tions (Roe and Badcock 1984, Benoit-Bird et al. 2001), we are primarily interested 
in changes occurring in taxa that experience shifts in light conditions over a 24-hr 
period. Therefore, we restrict our survey to adult fishes that occupy primarily the epi-
pelagic and neritic realm (0–200 m). Taxa residing at depths >200 m were identified 
using trawl depth catch data, data from FishBase, and personal observations of one 
of the authors (JAM). These “deep-sea” fishes were “pruned” from the tree topology 
using functions in the APE (Paradis et al. 2004) and GEIGER (Harmon et al. 2008) 
packages in R.

Bias in Family Representation.—To assess which families were over- and 
underrepresented in sampling for diel activity data, we compared the frequency of 
appearance of each family in the activity data set to the overall representation of 
each family among epipelagic fishes on FishBase. First, we downloaded data for all 
epipelagic Actinopterygians using the rfishbase package (Boettiger et al. 2012), and 
used the family codes from that table to look up family names for each species. Species 
included in our study were all species within each family that have adult life stages 
in marine or brackish water, including anadromous and catadromous species. We 
then conducted a test for each family to assess whether that family’s representation 
in the diel activity data set (835 marine/brackish species) was significantly more or 
less than expected given their representation in the full data set containing 11,880 
marine/brackish species. This was performed as a simple binomial test in R, with 
the number of “successes” representing the number of species from that family 
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that were represented in the activity data, the number of trials determined by total 
number of species in the activity data set, and the expected success rate for each 
family determined by the frequency of that family in the full data set from FishBase. 
For each family, we also estimated the standardized effect size using the following 
equation:

(FO − FE) ∕ (max{FO} − min{FO})      (Eq. 1)

where FO is the observed frequency, FE is the expected frequency, and the max{FO} 
– min{FO} represents the width of confidence interval around observed frequency.

Bias at the Species Level.—We also conducted a series of Monte Carlo simula-
tions to look for statistically significant biases in data collection on diel activity pat-
terns at the species level. As above, we restrict these analyses to epipelagic species, 
resulting in a total of 835 marine/brackish species for which we have activity data, 
and 3005 marine/brackish species for which we have FishBase and phylogenetic data. 
To examine geographic biases in data collection on activity patterns, we retrieved the 
contents of the “countries” and “ecosystems” tables linked to individual species’ de-
scription pages on FishBase. Despite the title, the areas listed in the “countries” table 
do not necessarily correspond to countries per se (e.g., “Alaska” and “Hawaii” are 
listed separately from the United States), instead corresponding to 283 geographi-
cally distinct areas of occurrence. Similarly, the FishBase definition of “ecosystem” is 
somewhat biologically unrealistic, with, for example, “USA” being defined as a single 
ecosystem. To a large extent, the 504 distinct FishBase “ecosystem” divisions primar-
ily represent geographically (rather than biologically) distinct areas, albeit at a finer 
scale than do the “countries” designations.

For each of the geographic areas and ecosystems, we calculated the total number 
of species known to occur in an area for which diel activity patterns were known. 
To look for patterns of under- and overrepresentation, we compared these observed 
species counts to a null distribution constructed using Monte Carlo methods. For 
each of 1000 replicates, we sampled 835 species at random from the full data set and 
calculated the number of species observed that occur in each country or ecosys-
tem. Using the species counts from these simulations, we were able to construct 95% 
confidence intervals on the expected number of species observed that occur in each 
country or ecosystem if species were sampled at random.

We also extracted data on size, depth distribution, maximum absolute latitude, 
and trophic level from FishBase pages for each species. We conducted Monte Carlo 
simulations to examine sampling biases based on these factors. First, each variable 
was split into 20 bins of equal width, and the frequency of species in each bin for 
which we had activity data was calculated. To estimate confidence intervals for the 
null distribution, we randomly selected the same number of species from the full 
data set and calculated the frequency in each bin, repeating this procedure 1000 
times.

Phylogenetic Biases in Species and Trait Sampling.—To test for phyloge-
netic biases in species sampling, we utilized the Rabosky et al. (2013) phylogeny and 
added species or tips to clades for which taxonomic membership is well-established, 
primarily representing families. Family-level diversity was restricted to brackish 
and marine species and their associated taxonomic information from FishBase. This 
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assignment of diversity prevented inflating diversity for clades spanning fresh and 
saltwater, such as Plotosidae, while also allowing us to capture lineages where adults 
or juveniles transitioning to adulthood migrate into brackish or marine water from 
fresh water. Tips were added to the tree with branch lengths of zero and polytomies 
were retained, as a fully bifurcating tree is unnecessary for analyses of phylogenetic 
over- and under-dispersion. This procedure yielded a completely sampled phylogeny 
of all 11,880 described marine epipelagic taxa. A second tree containing only reef 
fishes was also produced by “pruning” the tree of all marine epipelagic fishes to one 
with only species identified as reef associated on FishBase, resulting in a 4742 taxa 
tree. Tests of over- and under-dispersion for taxon and diel activity trait sampling 
were conducted for the complete epipelagic and reef fishes trees using the mpd.ses 
function in the picante library of R (Kembel et al. 2010), which measures the stan-
dardized mean pair-wise phylogenetic distances of species within a community, or 
in this case, those species which have been sampled (Webb et al. 2008). To assess sig-
nificance, we generated a null distribution of 999 samples where the tip states were 
shuffled across the tree. Tests of node-based phylogenetic clustering of sampling 
were conducted using the clade significance test (JC Oliver et al. unpubl data), that 
has been used in recent studies of trait clustering (Forrestel et al. 2014, 2015). This 
test builds upon the nodesig test in PhyloCom (Webb et al. 2008) by calculating the 
clade density of a state for each node, allowing for the identification of clades within 
which descendant lineages are characterized by similar densities that differ substan-
tially from the densities within their sister clade. This test was used to identify nodes 
and descendant taxa or clades with significant clustering of over or under sampling 
of taxa and diel activity. Significance was assessed using a null model where tip states 
were shuffled and a one-tailed test of significant (P < 0.05) clustering was conducted 
independently for each state (i.e., sampled or unsampled).

Results

Bias at the Family Level.—The results of the binomial tests for family repre-
sentation are given in Table 1. Negative standardized effect sizes indicate families 
that are underrepresented in the diel activity data set compared to their prevalence 
in the epipelagic fauna at large, while positive effect sizes represent families that are 
relatively highly sampled for activity data. We found 29 families that were sampled 
significantly less often than expected, the majority of which represent difficult to 
detect lineages such as blennies, gobies, eels, and flatfishes. In contrast, we found 
23 families that were sampled more often than expected, the majority of which are 
conspicuous members of the reef community, such as squirrelfishes, triggerfishes, 
and wrasses (Table 1).

Bias at the Species Level.—Results of the simulation study of geographic sam-
pling bias are given in Tables 2 and 3. Results for the two analyses are qualitatively 
similar; countries and ecosystems that are sampled at a significantly higher rate than 
expected tend to be small, tropical islands, particularly in the Indo-Pacific region. In 
fact, all overrepresented countries or ecosystems occurred in warm waters, with the 
tropical Indo-West Pacific biogeographic region (Briggs and Bowen 2012) account-
ing for the majority of areas (Tables 2, 3). Areas that are underrepresented include a 
mix of warm and cool regions that included North America, parts of Europe, as well 
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Table 1. Results of bias simulations based on family level taxonomy. Results are sorted by mean 
effect size with lower effect size values indicating less representation. Bold rows indicate families 
that are significantly over- or underrepresented. CI = confidence intervals.

Family P Lower CI Upper CI Effect Size
Syngnathidae <0.0001 0.0000 0.0066 −3.3815
Tripterygiidae <0.0001 0.0000 0.0044 −3.2884
Callionymidae <0.0001 0.0000 0.0044 −3.2119
Ophichthidae <0.0001 0.0000 0.0066 −3.1907
Bythitidae <0.0001 0.0000 0.0044 −3.1354
Soleidae <0.0001 0.0000 0.0044 −3.0016
Gobiidae <0.0001 0.0263 0.0536 −2.9751
Pseudochromidae <0.0001 0.0000 0.0044 −2.9060
Cyprinidae 0.0003 0.0000 0.0044 −2.4089
Triglidae 0.0012 0.0000 0.0044 −2.0074
Chaenopsidae 0.0028 0.0000 0.0044 −1.8354
Gobiesocidae 0.0005 0.0000 0.0066 −1.7276
Liparidae 0.0038 0.0000 0.0044 −1.6824
Microdesmidae 0.0057 0.0000 0.0044 −1.6060
Engraulidae 0.0015 0.0000 0.0066 −1.5368
Platycephalidae 0.0087 0.0000 0.0044 −1.5295
Batrachoididae 0.0083 0.0000 0.0044 −1.4912
Bothidae 0.0022 0.0000 0.0066 −1.4604
Sciaenidae 0.0004 0.0019 0.0139 −1.3513
Ariidae 0.0046 0.0000 0.0066 −1.3459
Blenniidae 0.0002 0.0058 0.0219 −1.3192
Exocoetidae 0.0182 0.0000 0.0044 −1.3001
Cynoglossidae 0.0044 0.0000 0.0066 −1.2950
Nemipteridae 0.0176 0.0000 0.0044 −1.2618
Zoarcidae 0.0176 0.0000 0.0044 −1.2618
Congridae 0.0182 0.0000 0.0066 −1.0406
Salmonidae 0.0379 0.0000 0.0044 −1.0324
Plesiopidae 0.0565 0.0000 0.0044 −0.9559
Dactyloscopidae 0.0898 0.0000 0.0044 −0.9177
Opistognathidae 0.0521 0.0000 0.0066 −0.8370
Ophidiidae 0.0507 0.0000 0.0066 −0.7988
Apogonidae 0.0118 0.0074 0.0249 −0.7911
Malacanthidae 0.1280 0.0000 0.0044 −0.7839
Mugilidae 0.0723 0.0000 0.0066 −0.7480
Cottidae 0.0419 0.0013 0.0122 −0.7194
Stichaeidae 0.1054 0.0000 0.0066 −0.7098
Tetrarogidae 0.1227 0.0000 0.0044 −0.7074
Synanceiidae 0.1921 0.0000 0.0044 −0.6883
Sillaginidae 0.1857 0.0000 0.0044 −0.6500
Uranoscopidae 0.1857 0.0000 0.0044 −0.6500
Clinidae 0.1037 0.0003 0.0086 −0.6024
Pinguipedidae 0.1962 0.0003 0.0086 −0.5215
Cheilodactylidae 0.2743 0.0000 0.0044 −0.5162
Ogcocephalidae 0.2743 0.0000 0.0044 −0.5162
Eleotridae 0.1900 0.0003 0.0086 −0.4811
Gerreidae 0.2832 0.0000 0.0066 −0.4808
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Table 1. Continued.

Family P Lower CI Upper CI Effect Size
Nototheniidae 0.2832 0.0000 0.0066 −0.4808
Leiognathidae 0.2751 0.0000 0.0066 −0.4299
Achiridae 0.4156 0.0000 0.0044 −0.4206
Cyclopteridae 0.4133 0.0000 0.0044 −0.4015
Synodontidae 0.3470 0.0003 0.0086 −0.3901
Chlopsidae 0.6553 0.0000 0.0044 −0.3824
Samaridae 0.6487 0.0000 0.0044 −0.3633
Creediidae 0.6429 0.0000 0.0044 −0.3441
Mullidae 0.3964 0.0007 0.0105 −0.3413
Labrisomidae 0.3781 0.0019 0.0139 −0.3305
Cyprinodontidae 0.6381 0.0000 0.0044 −0.3250
Neosebastidae 0.6381 0.0000 0.0044 −0.3250
Plotosidae 0.6381 0.0000 0.0044 −0.3250
Polynemidae 0.5309 0.0000 0.0066 −0.2899
Fundulidae 0.6324 0.0000 0.0044 −0.2868
Moringuidae 0.6324 0.0000 0.0044 −0.2868
Pholidae 0.6324 0.0000 0.0044 −0.2868
Stromateidae 0.6324 0.0000 0.0044 −0.2868
Muraenidae 0.3441 0.0058 0.0219 −0.2863
Scorpaenidae 0.3719 0.0041 0.0188 −0.2838
Pristigasteridae 0.7381 0.0000 0.0066 −0.2518
Pentacerotidae 1.0000 0.0000 0.0044 −0.2485
Monacanthidae 0.4629 0.0019 0.0139 −0.2460
Aracanidae 1.0000 0.0000 0.0044 −0.2294
Bregmacerotidae 1.0000 0.0000 0.0044 −0.2294
Callanthiidae 1.0000 0.0000 0.0044 −0.2294
Centropomidae 1.0000 0.0000 0.0044 −0.2294
Paralichthyidae 0.5723 0.0019 0.0139 −0.2249
Galaxiidae 1.0000 0.0000 0.0044 −0.2103
Harpagiferidae 1.0000 0.0000 0.0044 −0.2103
Istiophoridae 1.0000 0.0000 0.0044 −0.2103
Phycidae 1.0000 0.0000 0.0044 −0.2103
Clupeidae 0.6373 0.0041 0.0188 −0.1975
Gasterosteidae 1.0000 0.0000 0.0044 −0.1912
Synaphobranchidae 1.0000 0.0000 0.0044 −0.1912
Trachichthyidae 1.0000 0.0000 0.0044 −0.1912
Trichonotidae 1.0000 0.0000 0.0044 −0.1912
Atherinidae 0.7789 0.0003 0.0086 −0.1879
Champsodontidae 1.0000 0.0000 0.0044 −0.1721
Nomeidae 1.0000 0.0000 0.0044 −0.1721
Agonidae 0.7759 0.0003 0.0086 −0.1575
Hapalogenyidae 1.0000 0.0000 0.0044 −0.1529
Hemitripteridae 1.0000 0.0000 0.0044 −0.1529
Kraemeriidae 1.0000 0.0000 0.0044 −0.1529
Trachinidae 1.0000 0.0000 0.0044 −0.1529
Hemiramphidae 0.8053 0.0007 0.0105 −0.1506
Ostraciidae 1.0000 0.0000 0.0066 −0.1373
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Table 1. Continued.

Family P Lower CI Upper CI Effect Size
Paraulopidae 1.0000 0.0000 0.0044 −0.1338
Triacanthidae 1.0000 0.0000 0.0044 −0.1338
Bembridae 1.0000 0.0000 0.0044 −0.1147
Monodactylidae 1.0000 0.0000 0.0044 −0.1147
Retropinnidae 1.0000 0.0000 0.0044 −0.1147
Scophthalmidae 1.0000 0.0000 0.0044 −0.1147
Ariommatidae 1.0000 0.0000 0.0044 −0.0956
Gonorynchidae 1.0000 0.0000 0.0044 −0.0956
Latridae 1.0000 0.0000 0.0044 −0.0956
Leptoscopidae 1.0000 0.0000 0.0044 −0.0956
Pegasidae 1.0000 0.0000 0.0044 −0.0956
Scomberesocidae 1.0000 0.0000 0.0044 −0.0956
Scombridae 1.0000 0.0007 0.0105 −0.0899
Acropomatidae 1.0000 0.0000 0.0044 −0.0765
Bathydraconidae 1.0000 0.0000 0.0044 −0.0765
Citharidae 1.0000 0.0000 0.0044 −0.0765
Cryptacanthodidae 1.0000 0.0000 0.0044 −0.0765
Lophiidae 1.0000 0.0000 0.0044 −0.0765
Molidae 1.0000 0.0000 0.0044 −0.0765
Monocentridae 1.0000 0.0000 0.0044 −0.0765
Scatophagidae 1.0000 0.0000 0.0044 −0.0765
Anarhichadidae 1.0000 0.0000 0.0044 −0.0574
Drepaneidae 1.0000 0.0000 0.0044 −0.0574
Psettodidae 1.0000 0.0000 0.0044 −0.0574
Rhyacichthyidae 1.0000 0.0000 0.0044 −0.0574
Terapontidae 1.0000 0.0000 0.0066 −0.0482
Chirocentridae 1.0000 0.0000 0.0044 −0.0382
Dichistiidae 1.0000 0.0000 0.0044 −0.0382
Dinopercidae 1.0000 0.0000 0.0044 −0.0382
Lateolabracidae 1.0000 0.0000 0.0044 −0.0382
Lobotidae 1.0000 0.0000 0.0044 −0.0382
Pseudaphritidae 1.0000 0.0000 0.0044 −0.0382
Pseudotrichonotidae 1.0000 0.0000 0.0044 −0.0382
Trichodontidae 1.0000 0.0000 0.0044 −0.0382
Veliferidae 1.0000 0.0000 0.0044 −0.0382
Antennariidae 1.0000 0.0007 0.0105 −0.0379
Pleuronectidae 1.0000 0.0019 0.0139 −0.0348
Tetraodontidae 1.0000 0.0066 0.0234 −0.0234
Artedidraconidae 1.0000 0.0000 0.0044 −0.0191
Centrogenyidae 1.0000 0.0000 0.0044 −0.0191
Cheimarrichthyidae 1.0000 0.0000 0.0044 −0.0191
Dinolestidae 1.0000 0.0000 0.0044 −0.0191
Eleginopsidae 1.0000 0.0000 0.0044 −0.0191
Enoplosidae 1.0000 0.0000 0.0044 −0.0191
Leptobramidae 1.0000 0.0000 0.0044 −0.0191
Menidae 1.0000 0.0000 0.0044 −0.0191
Normanichthyidae 1.0000 0.0000 0.0044 −0.0191
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Table 1. Continued.

Family P Lower CI Upper CI Effect Size
Pomatomidae 1.0000 0.0000 0.0044 −0.0191
Ptilichthyidae 1.0000 0.0000 0.0044 −0.0191
Rachycentridae 1.0000 0.0000 0.0044 −0.0191
Rhamphocottidae 1.0000 0.0000 0.0044 −0.0191
Triodontidae 1.0000 0.0000 0.0044 −0.0191
Xiphiidae 1.0000 0.0000 0.0044 −0.0191
Zaproridae 1.0000 0.0000 0.0044 −0.0191
Atherinopsidae 1.0000 0.0007 0.0105 −0.0119
Osmeridae 0.6268 0.0000 0.0066 0.0027
Sphyraenidae 0.7158 0.0003 0.0086 0.0144
Grammatidae 0.5996 0.0000 0.0066 0.0154
Bovichtidae 0.5390 0.0000 0.0066 0.0408
Kuhliidae 0.5390 0.0000 0.0066 0.0408
Muraenesocidae 0.4693 0.0000 0.0066 0.0663
Echeneidae 0.4306 0.0000 0.0066 0.0790
Elopidae 0.3890 0.0000 0.0066 0.0917
Oplegnathidae 0.3890 0.0000 0.0066 0.0917
Sparidae 0.6247 0.0066 0.0234 0.0966
Bathymasteridae 0.3445 0.0000 0.0066 0.1045
Chironemidae 0.3445 0.0000 0.0066 0.1045
Latidae 0.3445 0.0000 0.0066 0.1045
Anomalopidae 0.2967 0.0000 0.0066 0.1172
Centriscidae 0.2967 0.0000 0.0066 0.1172
Fistulariidae 0.2454 0.0000 0.0066 0.1299
Glaucosomatidae 0.2454 0.0000 0.0066 0.1299
Coryphaenidae 0.1313 0.0000 0.0066 0.1554
Megalopidae 0.1313 0.0000 0.0066 0.1554
Pholidichthyidae 0.1313 0.0000 0.0066 0.1554
Hexagrammidae 0.2072 0.0003 0.0086 0.1660
Odacidae 0.2072 0.0003 0.0086 0.1660
Chanidae 0.0680 0.0000 0.0066 0.1681
Nematistiidae 0.0680 0.0000 0.0066 0.1681
Zanclidae 0.0680 0.0000 0.0066 0.1681
Albulidae 0.1819 0.0003 0.0086 0.1761
Acipenseridae 0.2032 0.0007 0.0105 0.1788
Pomacanthidae 0.3086 0.0049 0.0203 0.2125
Anguillidae 0.1352 0.0007 0.0105 0.2135
Dactylopteridae 0.0879 0.0003 0.0086 0.2166
Aplodactylidae 0.0491 0.0003 0.0086 0.2368
Ephippidae 0.0907 0.0007 0.0105 0.2395
Gadidae 0.0907 0.0007 0.0105 0.2395
Arripidae 0.0329 0.0003 0.0086 0.2469
Moronidae 0.0329 0.0003 0.0086 0.2469
Pomacentridae 0.2429 0.0273 0.0550 0.2493
Aulostomidae 0.0194 0.0003 0.0086 0.2570
Pempheridae 0.0780 0.0019 0.0139 0.2749
Kyphosidae 0.1126 0.0034 0.0172 0.2773
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Table 1. Continued.

Family P Lower CI Upper CI Effect Size
Diodontidae 0.0397 0.0013 0.0122 0.3000
Cirrhitidae 0.0097 0.0034 0.0172 0.4054
Belonidae 0.0062 0.0041 0.0188 0.4355
Lotidae <0.0001 0.0019 0.0139 0.4720
Priacanthidae 0.0005 0.0034 0.0172 0.4908
Caesionidae 0.0003 0.0041 0.0188 0.5218
Siganidae 0.0003 0.0049 0.0203 0.5404
Embiotocidae <0.0001 0.0066 0.0234 0.6566
Sebastidae 0.0001 0.0119 0.0324 0.6686
Lutjanidae <0.0001 0.0156 0.0381 0.7115
Haemulidae <0.0001 0.0194 0.0438 0.7672
Holocentridae <0.0001 0.0137 0.0353 0.7781
Carangidae <0.0001 0.0224 0.0480 0.8291
Lethrinidae <0.0001 0.0147 0.0367 0.9406
Balistidae <0.0001 0.0175 0.0410 1.0212
Serranidae <0.0001 0.0659 0.1046 1.1223
Scaridae <0.0001 0.0314 0.0605 1.2299
Acanthuridae <0.0001 0.0375 0.0687 1.4278
Labridae <0.0001 0.1105 0.1577 1.8904
Chaetodontidae <0.0001 0.0669 0.1059 1.8994

as several areas that are generally considered difficult for travel purposes (e.g., North 
Korea, Iraq, Iran).

Results for the other Monte Carlo simulations are given in Figure 1A. Activity data 
availability does not show any readily discernible bias based on the size, trophic level, 
or depth distribution of the species. Maximum absolute latitude, however, shows a 
definitive pattern; species with very low maximum absolute latitudes (i.e., exclusively 
equatorial species) and species with very high maximum absolute latitudes (i.e., spe-
cies extending into, if not necessarily exclusively found in, colder waters) tend to be 
under-sampled compared to expectations based on a random sampling of fish diver-
sity (Fig. 1B, C). In contrast, we find a sharp peak in the frequency of sampled species 
with maximum absolute latitudes between approximately 28° and 33° (Fig. 1A). In 
part this represents the large number of species with latitudinal limits in this range 
(gray ribbon, Fig. 1A); however, the bias toward sampling these species exceeds even 
that expected given their higher representation in the full data set. Given this result 
and the results from the geographic bias test above, we find support for a general 
trend toward increased representation of widespread, tropical species.

Phylogenetic Biases.—Significant biases in taxon sampling were found across 
the entire tree of marine fishes (Fig. 2A). In terms of taxon sampling, these biases 
were not restricted to a certain region of the phylogeny and spanned clades such as 
notothenioids, damselfishes, parrotfishes, and moray eels. In total, 45 named clades 
exhibited significant clustering of sampled taxa relative to the taxon sampling pres-
ent throughout the rest of the phylogeny (Fig. 2A). This high degree of bias was also 
reflected in a global calculation supporting significant under-dispersion across the 
phylogeny (Table 4). Global under-dispersion was also found for behavioral sampling 
patterns. These sampling patterns were similar to taxon sampling patterns, though 
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Figure 2. (A) Patterns of over (dark) and under-dispersion (light) in taxon sampling in the 
Rabosky et al. (2013) topology pruned to only marine species relative to a diversity tree contain-
ing all known marine fish species. (B) Patterns of over (dark) and under-dispersion (light) in ac-
tivity data relative to a diversity tree containing all known marine fish species. Black lines in the 
phylogeny represent no deviation under or over dispersion of taxon sampling. Names represent 
significantly over-dispersed named clades. Illustration of a sturgeon (Acipenseridae) represents 
the earliest diverging lineage in our analyses.
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largely dominated by primarily tropically distributed clades. Clustering of behavioral 
trait sampling was also more restricted, with only 20 named clades exhibiting signifi-
cant clustering of sampling while the majority of the nodes in the phylogeny exhib-
ited significant under-sampling (Fig. 3B). Both taxon and behavioral data sampling 
patterns revealed the majority of internal nodes in the ray-finned fish phylogeny had 
clustering of under-sampled taxa, reflecting the concentration of bias in more tip-
ward lineages and the overall low taxon and trait sampling.

Significant clustering of under-sampling in the phylogenetic and behavioral sam-
pling of only reef-associated fishes was also detected (Table 4). In contrast to patterns 
across all marine fishes (Fig. 2), sampled taxa were significantly clustered for several 
deeply nested internal nodes in both the phylogenetic and behavioral sample sets 
(Fig. 3). This pattern reflects a larger clade-specific bias than that observed across all 
marine fishes. However, large portions of the reef fish topology exhibited significant 
clustering of under-sampling (Fig. 3). In terms of phylogenetic sampling, the major-
ity of reef fish samples are distributed in moray eels, wrasses, parrotfishes, groupers, 
and damselfishes (Fig. 3A). Behavioral sampling biases of reef taxa closely mirror 
phylogenetic biases, though moray eels, wrasses, and damselfish are notably under-
sampled (Fig. 3B).

Discussion

Quantification of phylogenetic and diel activity data sampling patterns revealed 
several significant and previously unacknowledged patterns of sampling bias that im-
pose limits on our understanding of nocturnality and circadian rhythms in marine 
fishes. Diel activity data collected to date are dominated by wide-ranging tropical 
marine species, with a particular emphasis on species from the warm waters of the 
Pacific Ocean. This bias is largely driven by overrepresentation of conspicuous reef-
associated fishes, such as squirrelfishes, triggerfishes, butterflyfishes, and grunts. In 
contrast, small cryptic reef lineages, such as blennies and gobies, are significantly 
underrepresented despite being among the most species-rich groups of coral reef 
fishes. Additional clades with clandestine habits, limited ranges, or those that reside 
in temperate and polar environments are also significantly under-studied. In con-
trast, phylogenetic sampling patterns are generally biased at higher taxonomic ranks 
across all latitudes, though clades composed of largely clandestine species, such as 
eels, gobies, and blennies, are again identified in need of increased sampling. In total, 
our analyses provide a roadmap to filling major gaps in our understanding of diel 
activity patterns and evolutionary history across the world’s marine fishes.

Table 4. Patterns of phylogenetic over and under-sampling for all fishes and reef fishes, where MPD is the mean 
phylogenetic differences of all sampled taxa. obs = observations.

Tree Bias n
Observed 

MPD
Mean null 

model MPD
SD of mull 
model MPD 

Difference 
between obs P 

All fish Activity 822 226.947 258.866 3.46764 −9.20485 0.001
All fish Taxon 2,870 256.022 258.820 1.62375 −1.72312 0.035
Reef Activity 671 214.174 235.555 2.75621 −7.75726 0.001
Reef Taxon 1,346 227.726 235.549 1.72687 −4.53026 0.001
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Figure 3. (A) Significant clustering of sampled (dark) and unsampled (light) in taxon sampling 
in the Rabosky et al. (2013) topology pruned to only reef associated species relative to a diver-
sity tree containing all known reef associated fish species. (B) Significant clustering of sampled 
(dark) and unsampled (light) in activity data relative to a diversity tree containing all known reef 
associated fish species. Black lines in the phylogeny represent no deviation under or over disper-
sion of taxon sampling. Names represent significantly under-sampled named clades. Cartoon 
illustration of a butterflyfish (Chaetodontidae) represents one of the reef fish clades highlighted 
as highly sampled in our analyses.
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Sampling Biases: What Are We Missing?—Technical advances including re-
mote underwater video, baited video, stereo-video, diving equipment, and sonic te-
lemetry have catalyzed a previously unimaginable breadth of marine research (Willis 
et al. 2000, Harvey et al. 2007, Davis et al. 2015, Sopinka 2015, Lindfield et al. 2016). 
In the present study, we found diel activity data for 835 species of epipelagic fish 
from 68 studies (Online Appendix 1), reflecting the continual advancement of tools 
that enable underwater research. Additionally, many more studies were encountered; 
however, these included duplicate taxa from different localities and therefore repre-
sented redundant data for the purpose of our study. Cumulatively, the surveyed stud-
ies contain baseline data on diel patterns for 208 families of marine ray-finned fishes 
(Table 1). Across this sampling, we find no evidence for a sampling bias correlated 
with depth, maximum body size, or trophic ecology. However, several strongly sup-
ported spatial and taxonomic biases are present in these data.

Spatially, our analyses find strong support for an over-sampling of tropical species 
when assessing sampling patterns by latitude (Fig. 1), country (Table 2), or ecosys-
tem (Table 3). Although there are a higher number of shallow marine fish species 
at low vs high latitudes globally (Tittensor et al. 2010), the number of species with 
diel activity data vastly exceeds expectations that account for uneven patterns of 
species richness (Fig. 1). This overrepresentation is not entirely unexpected. Large-
scale, scuba-based behavioral and ecological studies of reef fish communities have 
been steadily accumulating for over 60 yrs (Hiatt and Strasburg 1960, Hobson 1965, 
Stephens et al. 1966, Albrecht 1969, Hobson 1975), providing baseline categorization 
of diel activity patterns across a wide spectrum of species. Based on our simulations, 
these sampling efforts have culminated in a much more complete profile of activ-
ity patterns for many entire families of reef fishes relative to other marine habitats 
(Table 1). While over half of the overrepresented families include reef fishes, such as 
butterflyfishes (Chaetodontidae), wrasses (Labridae), surgeonfishes (Acanthuridae), 
triggerfishes (Balistidae), and squirrelfishes (Holocentridae), more cryptic reef taxa, 
such as blennies and gobies, are highly underrepresented (Table 1). As blennies and 
gobies are among the most species-rich clades of reef fishes (Eschmeyer and Fricke 
2015) with speciation rates that rival those of African rift lake cichlids (Near et al. 
2013), this bias is not the result of rarity, but rather corresponds with another known 
bias: under-sampling small cryptic species during the collection of visual survey data 
(DeMartini and Roberts 1982, Ackerman and Bellwood 2000, Schmitt et al. 2002). 
This detection bias extends beyond blennies and gobies in our results. Over three 
quarters of the underrepresented families across all latitudes comprise difficult to 
detect, burrowing, or shelter-utilizing species, including several flatfish families, 
toadfishes, eels, and brotulas (Table 1).

In addition to hard to detect taxa, underrepresented species also included equato-
rial species with limited ranges (Fig. 1B). A potential explanation for this result may 
be found in the unusual patterns of geographic range size and endemism for tropi-
cal marine fishes. While tropical reefs represent biodiversity hotspots (Briggs 2003, 
Renema et al. 2008, Bellwood et al. 2012, Briggs and Bowen 2012, Dornburg et al. 
2015b), many reef-associated species possess large geographic ranges (Hughes et al. 
2002, Connolly et al. 2003, Bellwood and Meyer 2009). Therefore, unlike terrestrial 
biodiversity hotspots, fine scale patterns of endemism are less common while range 
overlap is common (Bellwood and Meyer 2009, Bellwood et al. 2012), so that diel data 
collected in one locality can represent species with ranges over thousands of miles. 
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The limited sampling of species with low maximum absolute latitude is therefore 
likely a reflection of range-restricted endemic species.

The interpretation of the data and results here is to a large degree reflective of the 
manner in which data are represented on FishBase; inclusion in the “countries” or 
“ecosystems” table means that a fish is known to occur in that area, not necessar-
ily that activity data have been collected there. It is therefore possible for an area to 
appear as “overrepresented” in this sense if activity data for many of its fish species 
have been collected, regardless of whether that data have been collected within that 
specific geographic area or ecosystem. Some of the areas that are detected as “over-
represented” in these analyses may therefore represent localities containing a large 
number of widespread species (Table 2), rather than areas that have been sampled 
extensively. In this case, endemics restricted to small areas, such as archipelagos, will 
appear underrepresented, while other sympatric species with broad ranges may pre-
vent the region from being detected as underrepresented in this analysis. This caveat 
notwithstanding, countries or ecosystems with disproportionately low representa-
tion should be considered good targets for increased sampling effort.

Outside of the tropics, we found strong evidence that several temperate and polar 
regions are underrepresented (Fig. 1C). While some of these regions lack data due 
to travel restrictions for some scientists (e.g., Iran, North Korea, Iraq; Table 2), other 
regions, including parts of the United States, Japan, and Russia, do not have such re-
strictions and are in need of more study (Table 2). The relative accessibility and close 
proximity to major research centers in these areas presents a unique opportunity to 
not only fill a critical gap in our understanding of diel activity patterns across fishes, 
but also enables the development of long-term studies and experiments to assess the 
impact of light and food regime changes on activity patterns and health. There is 
a growing recognition that changes in circadian rhythms affect organismal health 
(Stevens and Zhu 2015), and even minor changes in light regimes associated with 
urbanization can alter circadian rhythms in fishes (Brüning et al. 2015). Therefore, 
adding assessments of diel activity patterns alongside chemical (Myers et al. 1991, 
Lafferty et al. 2015) and hematological (Francesco et al. 2012, Fazio et al. 2013, 
Collins et al. 2016) health assessments could provide new insights into the health of 
wild populations in these areas.

Biases in the Evolutionary Analyses of Activity Data.—It is hardly sur-
prising that current attempts to infer the ray-finned fish tree of life contain taxon-
sampling biases. Given the vast diversity of living fish species, detailed phylogenetic 
studies commonly focus on subclades that often correspond to taxonomic ranks, 
such as genera, families, or orders (Alfaro et al. 2007, Dornburg et al. 2008, 2012, 
Friedman et al. 2013, Miya et al. 2013, Santini et al. 2013b), while studies of deep 
evolutionary relationships contain fewer representative taxa (Miya et al. 2005, Near 
et al. 2013, Eytan et al. 2015). This approach to sampling the evolutionary history 
of marine ray-finned fishes is clearly reflected by our quantification of taxon-sam-
pling biases (Fig. 2). Across all marine fishes, more than 30 clades were significantly 
overrepresented relative to other taxa (Fig. 2). Of these, the majority of significantly 
clustered nodes were found at the family level and dominated by conspicuous and 
well-studied reef-fish clades, such as butterflyfishes, damselfishes, triggerfishes, and 
parrotfishes, as well as scientifically prominent temperate and polar fishes, including 
Antarctic icefishes, porgies, and sturgeons (Fig. 2).
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While the phylogenetic sampling biases align with the expectations of the field, 
sampling biases in diel activity data do not mirror the accumulation of phylogenetic 
data for marine fishes (Fig. 2B). Instead, the majority of overrepresented clades for 
which we were able to find diel activity data correspond to the biases we found with-
out considering evolutionary history (Tables 1, 2, 3, Fig. 1). Reef fish clades such as 
squirrelfishes, bigeyes, hawkfishes, grunts, and emperors were highlighted as signifi-
cantly over-dispersed, raising the strong caution that, at this point, meta-analyses 
of the evolution of circadian rhythms in marine fishes will be highly biased in their 
representation of the total diversity of marine fish ecology and life history.

In contrast to sampling bias patterns across all marine fishes, analyses of sampling 
biases for just reef-associated species revealed a tighter coupling of biases in diel 
activity and phylogenetic sampling (Fig. 3). Both in terms of activity data and phy-
logenetic sampling, numerous large, unnamed clades, representing the most recent 
common ancestors of large diversities of families, are over-dispersed (Fig. 3). These 
clades are largely consistent for activity data, with a few notable under-sampled 
clades, such as wrasses, damselfishes, and moray eels (Fig. 3B). In both cases, signifi-
cantly under-sampled clades include cryptic, difficult-to-observe, or capture taxa, 
such as flatfishes, gobies, and blennies. This bias again warrants caution for not only 
meta-analyses of reef fish activity patterns, but also other comparative studies of reef 
fishes that could be misled. While gathering data for these under-sampled clades is 
certainly important, it should be noted that for clades highlighted as overrepresented 
in our study, we are not advocating that no further sampling is necessary. In fact, we 
would suggest the opposite.

Additional sampling of species already represented in studies of diel activity pat-
terns in marine fishes allows for the testing of more complex hypotheses. For ex-
ample, assessing diel activity patterns across different habitat classes within a species 
may reveal previously unrecognized patterns of behavioral plasticity (Fraser et al. 
1993, Fox and Bellwood 2011). Likewise, testing for correlations between changes 
in diel activity patterns and artificial light conditions is a topic of considerable con-
servation concern that has tremendous conservation and management implications 
(Longcore and Rich 2004, Davies et al. 2014). Finally, greater taxon sampling increas-
es statistical power in comparative studies (Smith et al. 2011, Beaulieu et al. 2012), 
highlighting already over-sampled large clades as a potential asset to researchers in-
terested in macroevolutionary phenomena.

While we find significant biases in the sampling of both phylogenetic and diel ac-
tivity data, our results are encouraging. Despite the logistical changes and challenges 
in sampling fishes that range from gear specific biases (Meekan et al. 2000, Latour 
et al. 2003) to behavioral differences between species or even individuals (Biro and 
Dingemanse 2009), our survey of the literature yielded compiled activity data for 
more than 800 species across more than 200 families of fishes. As ichthyology moves 
farther into the 21st century, these numbers will only grow. Likewise, the phyloge-
netic bias of underrepresented cryptic taxa is also sure to change with the continual 
accumulation of new studies sampling taxa highlighted here as underrepresented 
(Thacker et al. 2015, Yang et al. 2015, Miller et al. 2016). Given that tissue biopsies 
of the thousands of marine fish species sampled in phylogenetic analyses are often 
deposited in the world’s natural history collections (Wandeler et al. 2007, Buerki and 
Baker 2016), researchers will soon be able to integrate next generation sequencing 
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techniques with this steady accumulation of phylogenetic and behavioral data to 
place shifts in diel activity patterns into a genomic perspective.

Conclusions.—Over the past several decades, technological innovations have 
enabled the collection of biological data across the world’s oceans at a historically 
unprecedented pace and scale. As we look forward to the promises of the future, our 
study is a reminder that major advances in our understanding of marine biodiver-
sity are contingent on the cumulative research efforts of ichthyologists and citizen 
scientists globally. Sampling bias is not a phenomenon restricted to studies of cir-
cadian rhythms. As studies addressing sampling biases across different data types 
continue to emerge, it is increasingly apparent that bias is a common problem in 
biological data. Factors such as variation in species ecology (Watson et al. 1995), 
behavior (Dingemanse et al. 2010), individual specialization/variation (Bolnick et al. 
2003, Biro and Dingemanse 2009), and life history (Winemiller 1989, Gaillard et al. 
2000) can systematically alter the intended outcomes of research studies in areas 
as diverse as niche modeling (Phillips et al. 2009, Warren et al. 2014), feeding ecol-
ogy (Biro 2013), or conservation and management (Costa et al. 2010, Warren et al. 
2014). Given the heterogeneous spatial distribution of species and resources/access 
to wild populations globally, sampling bias patterns should also be predicted to vary 
considerably at different geographic or taxonomic scales, as well as between different 
types of biological data. For example, simply shifting our focus from all marine fishes 
to only reef-associated fishes demonstrated the scale-specific aspect of phylogenetic 
biases (Figs. 2, 3). Although some areas and taxa are more represented than others, 
uneven data coverage should not be a cause for despair.

The 21st century represents the era of “big data,” a point in science where we are 
able to harness the cumulative efforts of centuries of scholarship and make use of 
data collection methods without historical parallels (Hampton et al. 2013, Marx 
2013, Soranno and Schimel 2014). In the theme of the Fish at Night symposium, 
shining a light on fish at night is in some ways analogous to exploring biases lurk-
ing beneath the surface of an existing data structure. Focusing research efforts on 
one underrepresented component of marine vertebrates holds great potential for 
scientific discovery. Likewise, addressing emerging challenges associated with the 
accumulation of large data sets, such as sampling bias, also holds great promise. 
Assessing sampling bias patterns can increase the efficiency of experimental design, 
saving both research time and costs. Scrutinizing data for bias patterns can also spur 
the development of new methodologies while empowering new discoveries. As glob-
al biodiversity patterns continue to change in response to new pressures associated 
with the Anthropocene, such scrutiny of ecological or behavioral data will be essen-
tial if we are to accurately forecast and manage the future of the planet’s biodiversity.
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