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Abstract
1. Species distribution models (SDMs) are frequently used to predict the effects of 

climate change on species of conservation concern. Biases inherent in the process 
of constructing SDMs and transferring them to new climate scenarios may result 
in undesirable conservation outcomes. We explore these issues and demonstrate 
new methods to estimate biases induced by the design of SDM studies. We pre-
sent these methods in the context of estimating the effects of climate change on 
Australia's only endemic Pokémon.

2. Using a citizen science dataset, we build species distribution models for Garura 
kangaskhani to predict the effects of climate change on the suitability of habi-
tat for the species. We demonstrate a novel Monte Carlo procedure for estimat-
ing the biases implicit in a given study design, and compare the results seen for 
Pokémon to those seen from our Monte Carlo tests as well as previous studies in 
the same region using both simulated and real data.

3. Our models suggest that climate change will impact the suitability of habitat for G. 
kangaskhani, which may compound the effects of threats such as habitat loss and 
their use in blood sport. However, we also find that using SDMs to estimate the 
effects of climate change can be accompanied by biases so strong that the data 
themselves have minimal impact on modelling outcomes.

4. We show that the direction and magnitude of bias in estimates of climate change 
impacts are affected by every aspect of the modelling process, and suggest that 
bias estimates should be included in future studies of this type. Given the wide-
spread use of SDMs, systemic biases could have substantial financial and opportu-
nity costs. By demonstrating these biases and presenting a novel statistical tool to 
estimate them, we hope to provide a more secure future for G. kangaskhani and the 
rest of the world's biodiversity.
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1  | INTRODUC TION

Anthropogenic climate change has been demonstrated to nega-
tively impact the distribution of suitable habitat for many species, 
leading to local extirpations, range shifts and extinctions (Bellard 
et al., 2012; Chen et al., 2011; Parmesan, 2006). Managers attempt-
ing to mitigate the effects of climate change often have to make 
decisions that require some information about the tolerance of spe-
cies for given combinations of temperature, precipitation or other 
environmental variables in order to decide whether a given area 
is currently suitable, or will be so given expected environmental 
change (Hutchinson, 1978; Soberon & Nakamura, 2009). However, 
experimental approaches to estimating this ‘environmental niche’ 
are often not feasible for reasons of cost or due to other practical 
concerns. As such, a number of correlative approaches have been 
developed that attempt to derive estimates of species’ tolerances 
by correlating species occurrence data with the geographic distri-
bution of environments. These species distribution models (SDMs, 
also known as environmental niche models or ENMs) are often one 
of the key lines of evidence used to make decisions to mitigate the 
effects of climate change. Unfortunately there are many method-
ological and conceptual issues involved in the construction and ap-
plication of SDMs that remain poorly understood.

One major concern in SDM studies is that the methodological 
choices made in the SDM process may bias the predictions that 
the resulting models make (Barbet- Massin et al., 2010; Beaumont 
et al., 2016; Datta et al., 2020). Using SDMs requires decisions to 
be made regarding the choice of algorithm, predictor variables, 
emissions scenario, climate model and study area among other pa-
rameters. In turn, these choices may affect the distribution of en-
vironments available for modelling as well as the distribution of 
environments that models will be projected onto, and as such each 
of these aspects of an SDM study's experimental design has the po-
tential to introduce bias. Clearly, more approaches directed towards 
quantifying and mitigating biases in SDM studies are needed.

In order to better understand these issues, we use SDMs to examine 
the effects of climate change on Australia's only endemic Pokémon: kan-
gaskhan (Garura kangaskhani, Figure 1). To estimate the extent to which 
our results might be driven by methodological biases, we compare our 
predictions of changing habitat suitability for G. kangaskhani to similar 
models built from virtual species (Warren et al., 2020), and to a recent 
study of 220 species of Australian mammals (Beaumont et al., 2016). 
Garura kangaskhani is the only Pokémon endemic to the geographic re-
gion used for these two studies, and is therefore the Pokémon most 
comparable to those studies when examining the effects of SDM study 
design. We also perform a post hoc analysis on models from Warren 
et al. (2020) to illuminate which aspects of SDM study design are re-
sponsible for inducing biases when predicting the effects of climate 

change. Finally, we develop a novel Monte Carlo method that can be 
used to estimate the bias in any given SDM study design, and compare 
our predictions for G. kangaskhani to those expected by bias alone.

1.1 | Study system

We provide a detailed discussion of the current (woefully inadequate) 
state of knowledge about G. kangaskhani in supplement S1, but for 
the sake of brevity we restrict ourselves here to those aspects of its 
biology most relevant to conservation. Garura kangaskhani is an om-
nivorous (Bulbapedia, 2020a), diurnal (PokéBase, 2020) vertebrate 
endemic to Australia. It is primarily associated with grasslands and 
savanna habitats, although frequent sightings by field researchers in 
highly disturbed metropolitan areas indicate that they are also fairly 
resilient to anthropogenic disturbance; one study of ‘Normal’ type 
Pokémon (which includes G. kangaskhani) found that parking lots 
and universities were the second and third most common sources of 
sightings, with sightings more frequent during partly cloudy weather 
(The Silph Road, 2016). Periodic spates of sightings across Europe, 

F I G U R E  1   Artist's rendition of adult Gangura kangaskhani with 
young in pouch
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Asia and the Americas (Pokémon GO Wiki Community, n.d.) further 
suggests G. kangaskhani are capable of long range dispersal, but do 
not readily colonize new urban habitats outside of Australia.

1.2 | Threats

The vulnerability of animal and human populations is often a com-
plex function of multiple interacting stressors (O’Brien et al., 2004). 
Garura kangaskhani were previously hunted to the brink of extinction 
(Bulbapedia, 2020b), and one of the primary threats to the persis-
tence of G. kangaskhani populations continues to be the poaching 
of adults and eggs. While kangaskhan may sometimes be eaten 
(Gilbert, 2020), poaching is primarily motivated by the acquisition 
of specimens intended for blood sport; captured animals are used 
in contests in which the maternal defence of the young is exploited 
to motivate adult G. kangaskhani into fighting both conspecifics and 
heterospecifics (Molloy, 2013). Individuals deemed to be unfit for 
combat are frequently ground into ‘candy’ which is fed to combat-
ants (D’Anastasio, 2016). This destructive practice is not limited to G. 
kangaskhani, nor is it geographically restricted to Australia. Current 
estimates indicate that tens of millions of ‘trainers’ and ‘breeders’ 
are participating in these matches worldwide (Wikipedia, 2020), 
with hundreds of millions of dollars being spent on supplies alone 
(Phillips, 2018). With the recent discovery of a rare ‘shiny’ morpho-
type of G. kangaskhani that can add a visual enhancement to a train-
er's ‘battle league party’, we anticipate that collection pressure on 
this species will only increase in the future. We see little room for 
optimism in this scenario given that the culture around Pokémon har-
vesting so explicitly favours overexploitation, as seen in the common 
refrain of ‘gotta catch ‘em all’ (Prof. Y. Ohkido, pers. comm.).

Compounding the threats already posed by exploitation, anthro-
pogenic climate change may constitute an additional challenge for G. 
kangaskhani. Little is known about the species’ climate niche beyond a 
marked preference for partly cloudy weather (PokemonGoHub, 2020; 
Pokémon GO Wiki Community, n.d.). It is therefore difficult to esti-
mate a priori the response of G. kangaskhani to environmental change, 
or how this additional stressor might combine with the effects of 
poaching to impact the species’ long- term survival. Moreover, their 
apparently broad habitat tolerances and the fact that most weather 
can be considered at least ‘partly’ cloudy, suggest that G. kangas-
khani has few strong climate associations within Australia. This lack 
of strong associations may challenge our ability to make precise fore-
casts for this species, but may serve to make this species more useful 
for understanding the effects of bias; if a method shows a tendency to 
make strong predictions when there is no actual relationship between 
environmental predictors and the occurrence of the species, it sug-
gests that those predictions may be driven by methodological biases.

In this study, we use a citizen science dataset of occurrences to 
estimate the effects of climate change on populations of G. kangas-
khani. These data were initially recorded by hobbyists and profes-
sional trainers seeking out G. kangaskhani for exploitation, and as 
such the use of these data for conservation modelling does pose 

some ethical issues. However, given the uncertain conservation 
status of these noble creatures and the paucity of georeferenced 
localities of pokémon in natural history collection databases, few 
other options exist. We also acknowledge that the small sample size 
used here (37 points) may be cause for some concern, but note that 
this is not an unusually small sample size for SDM studies (Galante 
et al., 2018; Loe et al., 2012). Further, we compare our results to 
other SDM studies with N = 100 (Warren et al., 2020) and N ranging 
from 10 to 7,137 (Beaumont et al., 2016), and find broadly concor-
dant patterns (see Section 4). We also note that seminal contribu-
tions have been made by investigators using data sources of similar 
quality (Hurlbert, 1990; Lozier et al., 2009; Michelot et al., 2016), 
and as such we feel that the use of these data are justified.

2  | MATERIAL S AND METHODS

We obtained occurrence data for G. kangaskhani from online da-
tabases maintained by individuals seeking to collect them for use 
in blood sport or for personal gains that exploit the lack of inter-
national trade regulations for this species (PKMNGoTrading, 2016; 
KOPlayer, 2018; The Road and Community, 2016). Given how lit-
tle is known about G. kangaskhani, many decisions in the modelling 
process were necessarily made based on common practice in the 
literature rather than a priori knowledge of the underlying biol-
ogy (Araújo et al., 2019). In order to reduce the impact of spatial 
sampling bias we removed duplicate occurrences, as is common in 
SDM studies (Peterson et al., 2011). We also removed any occur-
rences falling in regions with no environmental data, resulting in 
37 unique data points. Climate data were obtained from CliMond 
(Kriticos et al., 2012) at 10- km resolution. We used the 19 Bioclim 
layers for both present and future projections. Future climate layers 
were obtained for four combinations of emissions scenario and cli-
mate model; A1B- CS, A2- CS, A1B- MR and A2- MR. Future climate 
projections were used for 2030, 2050, 2070, 2080, 2090 and 2100.

Using the ENMTools r package (Warren, Matzke, et al., 2021), 
we constructed SDMs using six different algorithms; generalized 
additive models (GAM), generalized linear models (GLM), maxi-
mum entropy (Phillips et al., 2006), random forests, Bioclim (Nix & 
Busby, 1986) and Domain (Carpenter et al., 1993). As this study is 
based on a citizen science dataset and limited research funds are 
available for systematic sampling of Pokemon distributions, true ab-
sence data are not available for G. kangaskhani. We therefore adopt 
a presence/background modelling approach that is common in SDM 
studies, in which environmental conditions at occurrence points are 
contrasted with the distribution of available environments within 
the species range (Peterson et al., 2011). This approach is common 
in SDM studies without true absence data (Araújo et al., 2019). 
Background points were extracted from a 250- km circular buffer 
around each occurrence. Models were built using 10,000 back-
ground points. For each model, 30% of the presence data were ran-
domly withheld for model validation. Code for model construction 
is given in Appendix S3 (Warren, Dornburg, et al., 2021).
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In order to summarize the effects of climate change on the distri-
bution of suitable habitat, we projected models onto each future cli-
mate scenario and then calculated the difference between the current 
and future suitability at each grid cell in the study area. We then aver-
age those projected changes to get the overall mean change in habi-
tat suitability projected by a given combination of distribution model, 
emissions scenario and climate model. Change in habitat suitability 
was evaluated at two spatial scales; within the species’ current range, 
and at a continental scale including all of Australia and Tasmania.

To evaluate the extent to which predictions concerning the future 
of G. kangaskhani may have been driven by methodological bias, we 
compare our empirical predictions to predictions derived from two 

other sources. First, we examine the predicted effects of climate 
change on a set of models for 220 simulated species in Australia from 
Warren et al. (2020). Second, we compare our observations for G. kan-
gaskhani to a distribution of predictions from a novel Monte Carlo ap-
proach that randomly chooses occurrence points from the study area.

2.1 | Post hoc analysis of simulations

In the simulations from Warren et al. (2020), virtual species’ ranges 
were derived from the availability of suitable habitat based on an 
underlying simulated niche, with a variety of niche breadths and 
range sizes. Within these ranges, species occurrences were sam-
pled in proportion to the product of the suitability of habitat and 

F I G U R E  2   Graphical sketch of Monte Carlo method for 
estimating bias in model construction and transfer. For simplicity 
we demonstrate these effects using a simple bioclim model, 
but a similar argument holds for any algorithm. In panel (a), we 
choose our study area (dashed lines) based on the distribution 
of our occurrence points (Gangura kangaskhani silhouettes). This 
affects the distribution of environments available during model 
construction and evaluation (dashed area, panel b). Using the 
occurrence points, we build a model that parameterizes the 
distribution of the species’ occurrences in environment space 
(dark rectangle, panels b and c). Given an emissions scenario and 
climate model, the distribution of available environments may 
differ in a future time period (dashed area, panel c). Hence, almost 
any bioclim- style model built using points from the available 
environment in panel (b) will estimate as suitable some set of 
environmental conditions that are no longer present in panel (c). 
Similarly, models will lack information to determine the suitability 
of the environmental conditions available in panel (c) that were not 
present in panel (b). Climate envelope methods such as bioclim do 
not tend to extrapolate much beyond the conditions they were 
trained in, so the change in available environments creates a bias 
towards predictions of declining habitat suitability and/or range 
contractions. Other modelling algorithms may have similar built- in 
biases, but the direction and magnitude may differ with their 
individual tendencies to extrapolate. It is worth noting that the bias 
inherent in a given study design will be affected by the change in 
available environments (which is affected by choice of study area, 
emissions scenario and climate model) as well as the shape and 
extent of the region of environment space predicted to be suitable 
(which are affected by study area, sample size and modelling 
algorithm). As such, all of these choices may affect our baseline 
expectation for what models will predict in a given study design 
independent of the actual locations of the species occurrences. 
To measure this bias, we repeatedly permute the locations of our 
data points within the study area and construct models using these 
random data (panel d), with every other aspect of the modelling 
process identical to the study design used for our empirical data. 
This eliminates any biological connection between the occurrence 
of our species and the environmental gradients, allowing us to 
estimate a distribution (panel e) of expected changes under the 
hypothesis that our occurrence data contain no information, and 
our predictions are consequently driven entirely by the bias implicit 
in the other choices made in our study design (sample size, study 
area, emissions scenario, climate model, etc.)

(a)

(b)

(d)

(e)

(c)
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a model of spatial sampling bias of varying strength (see Warren 
et al., 2020 for details). Models from these datasets were con-
structed using methods similar to those used to analyse G. 
kangaskhani, and were projected onto the same set of future sce-
narios. In order to understand the sources of bias and uncertainty 
in these predictions we also conducted a set of post hoc GLM 
analyses in which the average suitability change and associated 
errors from these models were regressed against year, with inter-
action terms for SDM algorithm, emissions scenario and climate 
model. Significant interactions from these regressions indicate 
that a given component of the study design modifies the direction 
or magnitude of the bias in predictions of future habitat suitability. 
See Appendix S2 (Warren, Dornburg, et al., 2021) for details and R 
code for these analyses.

2.2 | Monte Carlo estimates of methodological bias

To estimate biases in our predictions for kangaskhan, we developed 
a novel Monte Carlo approach that is derived from a test developed 
by Raes and ter Steege (2007). As originally designed, this approach 
is used to generate null distributions of predictive performance for 
species distribution models. The null distribution is constructed 
by selecting localities at random from within the study area until a 
dataset of the same sample size as the empirical dataset is obtained. 
These random localities are then used to generate SDMs using the 
same methods as those used for the empirical model, and the predic-
tive performance of the model is measured. By iteratively repeating 
this process, the user can construct an approximate distribution of 
expected predictive performance for an SDM under a given set of 
modelling conditions under the null hypothesis that the occurrence 
of the species within the study area is uncorrelated with any of the 
predictor variables. Comparing the discrimination accuracy of the 
empirical model to this null distribution allows users to test the hy-
pothesis that their model has predictive power beyond what can be 
explained by their study design alone.

Our Monte Carlo approach (Figure 2) modifies this method to ex-
amine the biases implicit in transferring species distribution models 
under a given set of analytical conditions. As in Raes and ter Steege 
(2007) and Bohl et al. (2019), we select N points at random from the 
study area (i.e. the area from which background data were taken), 
where N is the number of occurrence points used for modelling in 
the empirical dataset. Using these random points as ‘occurrences’ we 
build SDMs with all other modelling choices being identical to those 
for the empirical dataset. We then project our replicate models onto 
the different combinations of climate model and emissions scenario, 
and calculate the predicted changes in habitat suitability for those 
models in the same way as with the empirical data. This allows us 
to estimate a distribution of expected changes in habitat suitability 
given the same study area, SDM algorithm, emissions scenario and 
climate model as our empirical data, under the hypothesis that the 
actual occurrence of the species within the study area is unrelated to 
the environmental variables used for model construction.

2.3 | Interpretation

Our post hoc analyses of simulations from Warren et al. (2020) is 
intended to quantify the expected behaviour of our modelling ap-
proaches given a dataset in which there is an underlying (simulated) 
biological mechanism relating its probability of occurrence to a set 
of environmental predictors, while the novel Monte Carlo approach 
is intended to estimate the behaviour of a model built under identi-
cal conditions to our empirical model (including study region), but 
for which there is no biological mechanism underlying the distribu-
tion of occurrence points within that study area. The distributions 
of predictions produced by these two approaches are not necessar-
ily intended to represent a null hypothesis that must be rejected in 
order to trust model results, but rather as estimates of the behaviour 
of our modelling approaches independent of our data. By compar-
ing our empirical results to these distributions, we can determine to 
what extent our predictions are driven by our data, over and above 
the biases induced by our analytical framework.

3  | RESULTS

We find that the predicted change in suitability of habitat for G. kan-
gaskhani is relatively consistent across spatial scales (continental vs. 
within species’ current range), but depends strongly on the method 
of analysis. Models built using Bioclim, Domain or GAM algorithms 
predict that habitat suitability will decline on average, but disagree 
substantially on the magnitude of that decline (Figure 3). GLM and 
Maxent models both make mixed predictions depending on the cli-
mate model used; both methods predict increased habitat suitability 
under the MIROC- H climate model, but decreased suitability under 
the CSIRO model (Appendix S2, Warren, Dornburg, et al., 2021). 
Random forest models, by contrast, predict increasing habitat suit-
ability regardless of emissions scenario or climate model.

The models from Warren et al., (2020) were constructed from 
occurrence data based on simulated organisms with randomly se-
lected niche parameters. However, the predictions made from these 
models demonstrate many of the same behaviours as those seen in 
the empirical models for G. kangaskhani (Figure 4, see appendix S2 
in Warren, Dornburg, et al., 2021 for details). In particular we notice 
a broad trend for Bioclim and Domain models to predict declining 
habitat suitability, and for random forests to predict increasing hab-
itat suitability over time at the continental scale. In contrast to the 
results from G. kangaskhani and the Monte Carlo replicates, random 
forests models from simulated species predict lower- than- present 
suitability within species’ current ranges in 2030. However, they 
show a similar tendency towards increasing estimates of habitat 
suitability over subsequent years. GLM, GAM and Maxent models 
show much more mixed predictions across the set of simulated spe-
cies, which in the case of GLM and Maxent mirror our predictions 
for G. kangaskhani.

As the Warren et al., (2020) data are based on simulated organ-
isms for which the true suitability of habitat is known, we can project 
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the true effects of climate change on those species and measure the 
extent to which our model predictions are inaccurate (Appendix S2, 
Warren, Dornburg, et al., 2021). At a continental scale, we find that 
the average true suitability of habitat changes little with time, but 
that the variance in suitability across simulated species increases 
substantially further in the future. Within simulated species’ current 
ranges, the modal true change in habitat suitability over time remains 
very close to zero, but the spread of the distribution of changes in 
true habitat suitability is increasingly biased downwards as predic-
tions get further from the present.

Examining the distributions of errors in suitability predictions 
made by models shows that for the most part the general trends in 
behaviour of each modelling approach discussed above are in fact 
largely explained by biases in the kinds of errors each approach is 
making. GLM analyses of predictions of habitat suitability for these 

simulations and their accompanying errors demonstrate highly 
significant effects of every component of the modelling process 
(modelling algorithm, year, climate model, emissions scenario). This 
suggests that each one of these choices will affect the expected 
outcome of any modelling endeavour to a large (and typically un- 
measured) degree.

The behaviour of models built from randomly chosen data points 
within the training area for G. kangaskhani showed patterns that were 
generally concordant with those from the simulated species, and in 
many cases the predictions for G. kangaskhani fall well within the 
distribution of changes from those Monte Carlo replicates (Figure 5). 
In most cases where the behaviour of the G. kangaskhani model did 
fall outside of the distribution estimated from random points, it was 
in the direction of making less extreme predictions for the effects of 
climate change on G. kangaskhani than expected.

F I G U R E  3   Projected effects of climate 
change on the suitability of habitat over 
time for Gangura kangaskhani. Results 
are shown for models projected to the 
continental scale (top) and within the 
species current range as defined by 
the 250- km buffer around occurrence 
points (bottom). Each panel represents 
projections onto all combinations of 
emissions scenario and climate model. For 
similar plots separated by scenario and 
climate model, see Appendix S2 (Warren, 
Dornburg, et al., 2021)
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4  | DISCUSSION

In this study, we used a citizen science dataset in conjunction with 
climate data to estimate the effects of climate change on Australia's 
only endemic Pokémon, and find that our conclusions about changes 
in habitat suitability are profoundly affected by methodological 
choices. By examining multiple simulated data sources, we highlight 
the important possibility that the results seen here might not be in-
dicative of any direct effect of climate change on the suitability of 
habitat for G. kangaskhani, but instead represent the effects of bias 
that is imposed by the methods used to construct these models. The 
predicted effects of climate change on the suitability of habitat for 
G. kangaskhani generally reflect predictions we derive from mod-
els for simulated species as well as predictions from Monte Carlo 

tests based on randomly chosen data points within the range of G. 
kangaskhani.

It is interesting also to compare our results with Beaumont 
et al. (2016), a study that used models built with real data for 220 
Australian mammal species to examine which modelling approaches 
were more prone to making predictions of range contractions or ex-
pansions (Figure 6). Those models were based on real data for species 
for which the climate niche is not known, and as a result it was not 
possible from that study to say which of those models better esti-
mates the true impacts of climate change. However, we note that 
many of the model behaviours seen in Beaumont et al. (2016) echo 
those seen in our simulated data and Monte Carlo replicates; climate 
envelope methods show a strong tendency towards predictions of 
declining suitability and random forests show the strongest tendency 

F I G U R E  4   Predicted change in 
suitability based on simulated species 
from Warren et al. (2020)
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to predict increasing suitability, while Maxent, GLM and GAM all pro-
duce predictions of change in habitat suitability that are relatively 
symmetric around zero (Figures 4– 6). The similarity between the re-
sults for real species, simulated species and Monte Carlo replicates 
strongly suggests that the effects of the biases inherent in the design 
of SDM analyses are a ubiquitous feature of studies of this type.

In this study, our Monte Carlo tests focus on how a given set of 
modelling conditions may bias our estimates of the effects of climate 
change on average habitat suitability. However, we note that this 
framework can easily be extended. There are many different metrics 
that may be used to quantify the effects of climate change on spe-
cies (e.g. change in habitable area based on thresholded suitability 

scores, geographic shifts in ranges or centroids, changes in climate 
niche breadth, etc.). Applying this approach to those metrics is sim-
ply a matter of applying the chosen metric to predictions from each 
Monte Carlo replicate to obtain the distribution of that metric given 
randomly sampled occurrence data. Similarly, this approach could 
easily be extended to obtain distributions for models being trans-
ferred in space, rather than in time; transferring models in time and 
space present very similar challenges for SDM studies, and it is likely 
that similar biases exist in any study of that type. Further, it is possi-
ble to calculate summary statistics on a per- grid- cell basis from the 
suitability maps for Monte Carlo replicates, producing a map of the 
geographic regions where model predictions might be driven by study 

F I G U R E  5   Distribution of predicted 
changes in suitability values from Monte 
Carlo replicates based on the study area 
for Gangura kangaskhani. Black circles 
represent predictions of change in habitat 
suitability from empirical models
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design more than by the data used in modelling (Figure 7). Finally, we 
note that in the current study occurrence points for Monte Carlo repli-
cates were sampled with uniform probability across the study with no 
spatial autocorrelation or sampling bias. While this approach has been 
widely used for constructing null distributions of model performance 
(Bohl et al., 2019; Raes & ter Steege, 2007; Warren, Dornburg, et al., 
2021), other methods that attempt to maintain similar spatial auto-
correlation to empirical data when sampling may yield different null 
distributions (Beale et al., 2008; Nunes & Pearson, 2017; Roxburgh 
& Chesson, 1998). We consider this a very promising area for future 
study, as it may help to better understand which aspects of data collec-
tion and curation are most instrumental in reducing bias in predictions.

Species distribution models are widely used with the goal of 
guiding management and policy. However, the fact that we produce 
consistent predictions from meaningless data indicates that there are 
some combinations of emissions scenario, climate model, study area 
and species distribution modelling method that are strongly biased 
towards a given prediction. Crucially, in some modelling conditions we 
find that all Monte Carlo replicates agreed on the direction of change 
in habitat suitability in the future, despite the fact that the points for 
these replicates were chosen at random from within Kangaskahan's 
range and therefore represented no underlying relationship between 
the environment and the probability of occurrence. At the very least 
this suggests that those study designs should be chosen only when 
there is a compelling reason to believe that they accurately repre-
sent the underlying biology. In the case of G. kangaskhani we have 
insufficient information to make such a decision; in addition to our 
scant knowledge of the species’ ecology we anticipate that there are 

likely to be serious issues with data quality due to spatial sampling 
bias and small sample size due to an unfortunate lack of scientific at-
tention to wild Pokémon populations. In particular, we would like to 
point out that there may be some room for optimism given our level 
of ignorance of the distribution of G. kangaskhani; we do not currently 
know how far into the interior of Australia these animals might be 

F I G U R E  6   Projected proportional range change for 220 
Australian mammal species under two different climate change 
scenarios, modified from Beaumont et al. (2016) Figure 3. In that 
study models were built using fourteen different algorithms, but 
here the figure is modified to include only the algorithms used for 
Gangura kangaskhani to facilitate comparison with simulation and 
Monte Carlo results. Proportional range change is calculated as the 
future area of suitable habitat divided by the present area of suitable 
habitat based on binary predictions made from thresholded models. 
As such it is not directly comparable to the change in average 
suitability presented here for the other analyses, but the two are 
expected to be highly correlated (i.e. declining suitability scores will 
typically lead to a predicted reduction in the area of suitable habitat)
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F I G U R E  7   Using the 100 Monte Carlo replicates for the Maxent 
models for Gangura kangaskhani, we recorded the mean change in 
suitability (panel a) and the standard deviations of those predictions 
(panel b) when predicted to all four combinations of emissions 
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a specific direction of change in habitat suitability, and where the data 
have little leverage with which to counteract these biases
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found and so are unlikely to have fully characterized its environmen-
tal tolerances. Currently very little conservation funding is allocated 
for land acquisition and captive breeding programs for Pokémon, 
but increased investment in this area could be broadly beneficial; 
charismatic megavertebrates can often be used as flagship species 
to increase community involvement in conserving whole ecosys-
tems (Cummins, 2020). In order to effectively manage this majestic 
species, we suggest that future funding efforts be directed towards 
sending the authors of this study into remote areas of Australia to 
collect more reliable data, preferably equipped with a large supply 
of the ‘incense’ (presumably some sort of pheromone) that Pokémon 
hunters use to attract animals for capture.

It is reasonable to view with heavy scepticism the results of any 
study in which the analytical design is only capable of producing one 
answer regardless of the data. This may not mean, however, that the 
predictions from such a study are necessarily wrong. To illustrate this 
point, it is worth considering an extreme case in which the entire study 
area becomes unsuitable for any organism currently living within it 
(e.g. in future scenarios all currently occupied habitat is constantly on 
fire). In this case, any reasonable model built from any set of random 
occurrence data in that region would show complete extirpation of the 
organism, which would also coincide with the results seen from any 
carefully vetted empirical dataset for a real species. The conclusions of 
those models would be correct, but they would be wholly unaffected by 
the data; they would be an inevitable result of the modelling conditions. 
Any dataset would likely support the same conclusions regardless of 
whether those data represent any underlying biological phenomenon.

In the real world, however, the effects of climate change are rarely so 
absolute, and are rarely known in advance. Finding that we are strongly 
biased towards making specific predictions irrespective of our data is 
therefore a cause for great concern; it implies that we may have essen-
tially selected our conclusions by selecting our study design. In such a 
situation, the resulting outputs should at minimum be interpreted in the 
context of the biological plausibility of those methodological choices, 
the biases they induce, and their consequences for decisions made 
based on those models. In particular, if we find ourselves in a situation 
where different approaches show strong opposing biases, interpreta-
tion of those results must be made in the context of how biologically 
realistic the alternative modelling approaches are. Arguably one should 
go further than that, however, and simply not trust the outcome of a 
modelling approach that produces the same result regardless of the data 
provided to it. In these cases, additional lines of evidence are needed to 
adequately inform conservation decisions. Understanding when we are 
in such a situation is the key to making these decisions, and we believe 
that Monte Carlo tests such as the one presented here may be a valuable 
tool for measuring the biases inherent in the design of empirical studies.
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