2,355 research outputs found

    Comment on ``Periodic wave functions and number of extended states in random dimer systems'

    Get PDF
    There are no periodic wave-functions in the RDM but close to the critical energies there exist periodic envelopes. These envelopes are given by the non-disordered properties of the system.Comment: RevTex file, 1 page, Comment X. Huang, X. Wu and C. Gong, Phys. Rev. B 55, 11018 (1997

    El patinaje: una propuesta con gran auge en la educación física

    Full text link
    Introducir de manera practica y lúdica la enseñanza del patinaje y analizar sus aplicaciones en el ámbito de la enseñanza de la educación física

    The nearly Newtonian regime in Non-Linear Theories of Gravity

    Full text link
    The present paper reconsiders the Newtonian limit of models of modified gravity including higher order terms in the scalar curvature in the gravitational action. This was studied using the Palatini variational principle in [Meng X. and Wang P.: Gen. Rel. Grav. {\bf 36}, 1947 (2004)] and [Dom\'inguez A. E. and Barraco D. E.: Phys. Rev. D {\bf 70}, 043505 (2004)] with contradicting results. Here a different approach is used, and problems in the previous attempts are pointed out. It is shown that models with negative powers of the scalar curvature, like the ones used to explain the present accelerated expansion, as well as their generalization which include positive powers, can give the correct Newtonian limit, as long as the coefficients of these powers are reasonably small. Some consequences of the performed analysis seem to raise doubts for the way the Newtonian limit was derived in the purely metric approach of fourth order gravity [Dick R.: Gen. Rel. Grav. {\bf 36}, 217 (2004)]. Finally, we comment on a recent paper [Olmo G. J.: Phys. Rev. D {\bf 72}, 083505 (2005)] in which the problem of the Newtonian limit of both the purely metric and the Palatini formalism is discussed, using the equivalent Brans--Dicke theory, and with which our results partly disagree.Comment: typos corrected, replaced to match published versio

    Newtonian limit of the singular f(R) gravity in the Palatini formalism

    Full text link
    Recently D. Vollick [Phys. Rev. D68, 063510 (2003)] has shown that the inclusion of the 1/R curvature terms in the gravitational action and the use of the Palatini formalism offer an alternative explanation for cosmological acceleration. In this work we show not only that this model of Vollick does not have a good Newtonian limit, but also that any f(R) theory with a pole of order n in R=0 and its second derivative respect to R evaluated at Ro is not zero, where Ro is the scalar curvature of background, does not have a good Newtonian limit.Comment: 9 page

    On Schwartz Groups

    Get PDF
    In this paper we introduce a notion of a Schwartz group, which turns out to be coherent with the well known concept of a Schwartz topo- logical vector space. We establish several basic properties of Schwartz groups and show that free topological Abelian groups, as well as free locally convex spaces, over a hemicompact k{space are Schwartz groups. We also prove that every hemicompact k{space topological group, in particular the Pontryagin dual of a metrizable topological group, is a Schwartz group

    Exciton Optical Absorption in Self-Similar Aperiodic Lattices

    Get PDF
    Exciton optical absorption in self-similar aperiodic one-dimensional systems is considered, focusing our attention on Thue-Morse and Fibonacci lattices as canonical examples. The absorption line shape is evaluated by solving the microscopic equations of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values, according to the Thue-Morse or Fibonacci sequences. Results are compared to those obtained in random lattices with the same stechiometry and size. We find that aperiodic order causes the occurrence of well-defined characteristic features in the absorption spectra which clearly differ from the case of random systems, indicating a most peculiar exciton dynamics. We successfully explain the obtained spectra in terms of the two-center problem. This allows us to establish the origin of all the absorption lines by considering the self-similar aperiodic lattices as composed of two-center blocks, within the same spirit of the renormalization group ideas.Comment: 16 pages in REVTeX 3.0. 2 figures on request to F. D-A ([email protected]

    La enseñanza de la natación a través del juego

    Full text link
    La intervención temprana en el medio acuático, supone abordar la enseñanza desde una perspectiva lúdica, donde el juego es el elemento clave de la progresión en el medio acuático

    Divergence of the dielectric constant in ultrathin granular metal films near the percolation threshold

    Get PDF
    We report on the electronic and optical properties of ultrathin granular films. We demonstrate that the static dielectric constant increases with thickness in the dielectric regime and diverges at the critical thickness, as predicted by classical percolation theory. However, for thicker samples, the dc conductivity does not obey scaling laws due to the presence of tunneling conduction. In this region the dielectric constant is positive, and the electronic transport is not metallic but can be described by Jonscher's universal power law, even though there is a Drude-like response indicating the presence of free charge carriers. Only for thicker films when the dielectric constant becomes negative is there metallic conduction
    • …
    corecore