On Schwartz groups

L. Aulenhofer, M. J. Chasco, X. Dominguez, V. Tarieladze

Abstract

In this paper we introduce a notion of a Schwartz group, which turns
out to be coherent with the well known concept of a Schwartz topo-
logical vector space. We establish several basic properties of Schwartz
groups and show that free topological Abelian groups, as well as
free locally convex spaces, over a hemicompact k—space are Schwartz
groups. We also prove that every hemicompact k—space topological
group, in particular the Pontryagin dual of a metrizable topological
group, is a Schwartz group.

1 Introduction

The notions of Schwartz and nuclear locally convex spaces were introduced
by A. Grothendieck in [14] and [13], respectively. An intensive study of
these spaces was made in [14, 15, 17, 24, 18, 27|, and many other papers.
Some relevant problems in the theory of Schwartz spaces have been solved
only recently, see in this connection [6, 7].

Many important spaces in Analysis and its applications are either nu-
clear or Schwartz. Spaces in both classes satisfy some properties of finite-
dimensional spaces (e. g. their bounded subsets are precompact) which
general Banach spaces do not have.

A group version of the concept of a nuclear space, introduced by W.
Banaszczyk in [5], has been proved to be useful in Harmonic Analysis and
topological group theory. In this paper we define a group counterpart of
the Schwartz notion. Our definition uses only group-theoretic tools. For the
underlying additive group of a topological vector space, our notion appears
to be the usual notion of a Schwartz space.

The paper is organized as follows:

In Section 2 we recall some necessary concepts of the theory of topolog-
ical Abelian groups.

We start Section 3 defining Schwartz groups. After that, we obtain per-
manence properties for this class regarding subgroups, Hausdorft quotients,
products and local isomorphisms, and show that bounded subsets of locally
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quasi—convex Schwartz groups are precompact. We finish this section prov-
ing that every Schwartz group can be embedded in a product of metrizable
Schwartz groups.

We establish in Section 4 that the underlying additive group of a topo-
logical vector space E is a Schwartz group according to our definition if
and only if £ is a Schwartz space. At this point a rather unexpected re-
sult is obtained: there is a metrizable Schwartz group without nontrivial
continuous characters. Such a group is obtained as a quotient group of a
metrizable locally convex Schwartz space. It is known, however ([5, 8.6,
7.4]) that quotient groups of metrizable nuclear locally convex spaces are
nuclear groups and hence their continuous characters separate their points.
The remaining part of Section 4 is devoted to prove that all nuclear groups
are Schwartz groups.

In the last section we deal with free topological Abelian groups. Here
our main result is proved: if a completely regular Hausdorff topological
space X is a hemicompact k-space, then the free topological Abelian group
A(X) is a locally quasi-convex Schwartz group. Note that for an infinite
compact space X the group A(X) is never nuclear ([3]). This result has
also consequences out of the free group framework. We prove in particular
that every hemicompact k—space topological group is Schwartz, as well as
the Pontryagin dual group of any arbitrary metrizable topological Abelian

group.

2 First definitions and results

All groups under consideration will be Abelian topological groups. The set
of neighborhoods of the neutral element in the group G will be denoted by
No(G).

We write T, = {t € T : Ret > 0} where T := {z € C : |z] =
1} is the compact torus. For an Abelian topological group G, the group
of all continuous homomorphisms y : G — T, usually called continuous
characters, with pointwise multiplication and endowed with the compact—
open topology, is a topological group, denoted by G” and called character
group of G.

For U C G, the set U := {x € G": x(U) C T, } is named the polar of

U. We will say that U is quasi-convez if U = m x N(Ty).

xeu®>
A topological Abelian group is called locally quasi-convez if it has a basis

of neighborhoods of zero formed by quasi-convex sets. (See [5].)

For a subset U of an Abelian group G, such that 0 € U, and a natural
number n, we set Uy :={x € G:x € U, 2z € U, ..., nx € U}, and
Uiso) = Nnen Umy- For T4 C T, we have (T )y = {*™ : [¢| < 1/4n} and
(T+)(00) = {1}

We shall list some properties of these new settings:



Lemma 2.1. Let G be an Abelian group, U a subset of G with 0 € U and
n € N.

1. For any Abelian group H and any group homomorphism ¢ : G — H
we have o(Ugmy) € @(U)(n).

2. For any subgroup S of G we obtain: (SNU)wy = SN Uy

3. If G is a topological Abelian group and U is quasi—convez, then

Um =[] X (T1) )

xeu>
and in particular Ugy + .. + Uy C U.

If U is a quasi-convex subset of G, then 2.1.3. implies that the family
{Uwm) : n € N} is a basis of neighborhoods of zero for a locally quasi-convex
group topology 7y on G. We will use the notation Gy for the Hausdorff
group G /U« associated with (G, 7y) and ¢y for the canonical map from
G to GU-

If U and V are quasi-convex subsets of a topological group G, such that
V' C U the linking homomorphism vy : (Gv,7y) — (Gu,Tv), ev(z) —
oy (x) € Gy is well defined and continuous.

Lemma 2.2. Let (U,) be a sequence of quasi-convex neighborhoods of zero
in G which satisfy Uyyqy + Upye1 € U,. Then H := ﬂ U, s a subgroup

neN
of G and the sets (m(Uy,))nen, where m : G — G/H denotes the canonical

projection, form a neighborhood basis of zero of a locally quasi-convexr group
topology in G/H.

Proof. Since quasi-convex sets are symmetric, it is straightforward to show
that H is a subgroup of G. Every character x € U? satisfies x(H) = {1}
and hence, by the definition of quasi-convexity, H + U,, = U,,. This implies
that the sets w(U,) are quasi-convex and hence the assertion follows. O

3 Schwartz groups

Definition 3.1. Let G be a Hausdorff topological Abelian group. We say
that G is a Schwartz group if for every neighborhood of zero U in G there
exists another neighborhood of zero V in G and a sequence (F,) of finite
subsets of G such that

VCF,+Uyw forevery neN.

Example 3.2. From the definition we obtain directly that locally precompact
groups are Schwartz groups.



Remark 3.3. As we shall see later on (cf. Theorem 4.5), local quasi—
convezity and the notion of a Schwartz group defined in 3.1 are independent.
The concept of a Schwartz group, however, is most fruitful when restricted
to the class of locally quasi—convex groups. It is easy to prove that a lo-
cally quasi—convex group G is a Schwartz group if and only if for every
quasi—convex neighborhood of zero U in G there exists another quasi—convex
netghborhood of zero V- C U such that the linking homomorphism @yy is
precompact (i.e. pyy (W) is precompact in Gy for some neighborhood W in

Gy ).

Proposition 3.4. Let G and H be topological Abelian groups. Suppose that
H is a Schwartz group and there exist Uy € No(G) and a map ¢ : Uy — H
such that

(a) @ is continuous.
(b) olx+y)=p(x)+ o(y) for every x, y € Uy such that x +y € U.

(¢) For every U € No(G) with U C Uy there exists V. € No(H) with
© ' (Viny) C Uy for every n € N.

Then G is a Schwartz group.

Proof. Fix a symmetric U € Ny(G) with U + U C Uy. Let V € Ny(H) be
such that ¢=(V(,)) C U for every n € N. Finally let V' € Ny(H) be such
that V' 4+ V' C V. Since H is Schwartz, there exist W € Ny(H) (which we
may choose symmetric and contained in V'), and a sequence of finite subsets
F, C H,with W C Fn—i-V('n) for every n € N. Put F), = {fl,’m fgm, . flnn}
For each n € N, define the (possibly empty) set of indices

Li={i€{1,2,....in} : @ " ((fim + V) N W) # 0}

For each i € I,, choose f;, € cp_l((fm + V(’n)) NW), and define F,, = {fi :
i€}

Let us show that ¢~ '(W) C F, + U, for every n € N; since ¢ is
continuous, this will imply that G is a Schwartz group. Fix any x € e L (W).
For every n € N, z € o !(F, + V(’n)), hence there exists j, € {1,2,...,i,}
with = € ¢ ((fj,n + Vi) NW). Clearly j, € I, so we have chosen an
Finm € 0 ((fjum + Viy) N W) above.

Now both z and f;, , are elements of ¢~ '(IW) C (V) C U and since
U+ U C Uy it follows from (b) that

@(w - fjn,n) = 90(1') - Qo(fjn,n) = 90(*1') - fjn,n + fjn,n - 90<fjn,n>

which belongs to V(’n) + V('n) C Viny. We deduce x — fj, , € o (Viny) C U
for every n € N and the proof is complete. n



Remark 3.5. From the proof of Prop. 3.4 it follows that if G is a Schwartz
group, then the finite sets F), and the neighborhood of zero V' taking part in
the definition can be chosen in such a way that F, CV for every n € N.

Proposition 3.6. (a) The class of Schwartz groups is a Hausdorff variety
of topological Abelian group, i. e. the following properties hold:

(a.1) Every subgroup of a Schwartz group is a Schwartz group.

(a.2) The Cartesian product of an arbitrary family of Schwartz groups,
equipped with the Tychonoff topology, is a Schwartz group.

(a.3) Every Hausdorff quotient of a Schwartz group is a Schwartz group.

(b) Let G and H be locally isomorphic topological Abelian groups. Then
G is a Schwartz group if and only if H is a Schwartz group.

Proof. The proof of (a.2) is straightforward, (a.3) is an easy consequence of
Lemma 2.1.1. and (a.1) and (b) are corollaries of Prop. 3.4. O

In our next result we will use the following notion of boundedness ([16]):

Definition 3.7. Let G be a topological Abelian group and B a subset of G;
B is said to be bounded if for every zero neighborhood U there exists a finite
set ' C G and somen € N such that BC F+U+ .7. +U.

Clearly every precompact set is bounded according to this definition.
Note also that in a locally convex vector space, the bounded sets are exactly
those which are absorbed by any neighborhood of zero.

Proposition 3.8. Let G be a locally quasi-conver Schwartz group and let
B be a bounded subset of G. Then B is precompact.

Proof. For a quasi-convex U € Ny(G) there exist V € Ny(G) and a sequence
(Fy,) of finite subsets of G such that V' C F, + U, for every n € N. On the
other hand, by the boundedness of B there exist a finite set Fy C G and
m € N such that B C Fy+V 4+ .7. 4+ V. Hence, by 2.1.3,

B F+V+m 4V
Fy+ (Fm + U(m)) + . 4+ (Fm + U(m))
Fo+ (Fp+ .7+ Fy) + (U(m) +.m 4+ U(m))

Fo+ (F+ .7+ F,) + U.

NN 1N 1N

]

The same property was obtained by J. Galindo ([12]) for bounded subsets
of nuclear groups. In the next section we will see that every nuclear group
is a Schwartz group.



Theorem 3.9. Every (locally quasi—convex) Schwartz group can be embed-
ded into a product of metrizable (locally quasi—convex) Schwartz groups.

Proof. Let Uy be a neighborhood basis of G. Fix an arbitrary U € U.
There exists a neighborhood U; and a sequence (F},)nen of finite subsets
of G such that Uy C Fy, + Uy, for every n € N. We may assume that
Uy is symmetric and satisfies Uy + Uy C U. Let us put Uy := U and
suppose now that symmetric neighborhoods Uy, ..., U and finite sets F},,
(n €N, je{l,...,k}) have been constructed which satisfy the following
properties: U;+U; C U;_y and U; C Fj,+(Uj—1)(n) for every j € {1,...,k}
and n € N. By the definition of a Schwartz group, it is possible to continue
the construction.

The sequence (Uy, Uy, U, . . .) forms a neighborhood basis for a (not nec-
essarily Hausdorff) group topology on G. The intersection Hy := (1, oy Un
is a subgroup of G. Call py the canonical projection of G onto G/Hy. The
sets (pu(Uy))nen generate a metrizable group topology on G/Hy. By 2.1.1.
we have

pu(U;) € pu(Fjn) + pu(Uj-1)m)
for every j, n € N, and thus G/Hy is a metrizable (Hausdorff) Schwartz
group.

With every U € Uy, we associate in the same way a metrizable Schwartz
group topology on the corresponding quotient G/ Hy, and consider the map-
ping

©:G— ] G/Hu, =~ (pu(@)vew-
Uelly

It is clear that ® is a continuous monomorphism. For U € U, we obtain,

since Uy + Hy C U,

oU)dim®n | pu(Uh)x ] G/Hw |,
U'eto\{U}

which shows that ® is an embedding.

Now suppose that G is locally quasi—convex. The neighborhood basis
Uy, as well as the sequence (U, Uy, Uy, . ..) for each U € Uy, can be chosen
to contain only quasi—convex sets. According to 2.2, the quotient groups
G/Hy are locally quasi—convex as well. ]

4 Schwartz groups, Schwartz locally convex
vector spaces and nuclear groups

In this section we will prove that both Schwartz spaces and nuclear groups
are Schwartz groups.



Definition 4.1. A topological vector space E is a Schwartz space if for every
netghborhood of zero U in E, there exists another neighborhood V' such that
for every a > 0 the set V' can be covered by finitely many translates of aU.

As in [26] or [21], local convexity is not required in our definition of
Schwartz spaces (in [26, Example 6.4.4] an example of a non locally convex
Schwartz F-space is given). Since the neighborhoods of zero in a topological
vector space may be assumed to be radial, we can replace o > 0 by % (where
n € N) in Definition 4.1. This easily leads to the following result:

Proposition 4.2. Let E be a topological vector space. The following are
equivalent:

(a) E is a Schwartz space.

(b) The additive topological Abelian group underlying E is a Schwartz
group.

A locally convex vector group is a real vector space endowed with a Haus-
dorff group topology which has a basis of neighborhoods of zero consisting
of absolutely convex sets. This notion was defined by Raikov in [25].

Every absolutely convex and closed subset U of a locally convex vector
group E, is quasi—convex (see the proof of Lemma (2.4) in [5]), and Eyy =
sp(U) /Uy, endowed with the topology induced by 7y, is a normed space.

Nuclear groups, as well as nuclear vector groups were introduced by
Banaszezyk in [5]. The class of nuclear groups contains all locally com-
pact Abelian groups and additive groups underlying nuclear vector groups.
Moreover, it is closed with respect to the operations of taking subgroups
and forming Hausdorff quotient groups, arbitrary products and countable
direct sums. An intensive study of nuclear groups has been developed since
their introduction, which has given rise to several important results (see [2]
for a survey).

In [10, §8], it is proved that a nuclear vector group is a locally convex
vector group E such that for every absolutely convex closed neighborhood
of zero U in E there exists another absolutely closed convex neighborhood
of zero V' C U such that ¢y : Ev) — Eq) is a nuclear operator where X
stands for the completion of the normed space X, and @y for the continu-
ous extension of the canonical map ¢y to the completions of both spaces
E(V) and E(U).

Theorem 4.3. Every nuclear group G s a locally quasi—convex Schwartz
group.

Proof. According to [5, 8.5], every nuclear group is locally quasi—convex.
An important structural result ([5, 9.6]) implies that G is topologically
isomorphic to H/K where H is a subgroup of a nuclear vector group F' and
K is a closed subgroup of H.

Because of 3.6, it is sufficient to show that F'is a Schwartz group.
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As explained above, for every absolutely convex closed neighborhood U
of 0 in F there exists a absolutely convex closed neighborhood V' such that
V C U and pyy is a nuclear operator. It is well known that every nuclear
operator is precompact (see e.g. (3.1.5) in [24]). An easy argument shows
that F'is a locally quasi—convex Schwartz group. O]

Example 4.4. Let

E={z€R": |lalls ==Y |zl (n+1)"% < 00, Vk € N}.

Then:

(i) The vector space E with the topology T determined by the sequence of
norms || - ||lg, & = 1,2, ... is a Fréchet space.

(i) (E,T) is a Schwartz space.
(111) (E,T) is not nuclear.

Proof. Proof. Let o, := In(1+n),n = 1,2,... and a := (a,)nen. Then
with the notation in [18, p. 27 and p. 211] we have that £ = Ay(a).
Consequently, E is a power series space of finite type.

(i) follows from [18, p. 50 and p. 69 (Proposition 3.6.2)].

(ii) According to [18, p. 212], this follows from [18, p. 210 (Proposition
10.6.8))].

(iii) This follows from [18, p. 497 (Proposition 21.6.3)]. O

Another class of non nuclear Schwartz spaces will be presented in 5.7.

Theorem 4.5. A Schwartz group is not necessarily locally quasi—convez.
Even more: There exists a metrizable Schwartz group with trivial character

group.

Proof. Let F be a Fréchet Schwartz space which is not nuclear (4.4). Ac-
cording to a result of M. and W. Banaszczyk ([4]), there is a (discrete)
closed subgroup H of F' such that the quotient group sp(H)/H, which is
a Schwartz group by Proposition 3.6 (a.3), has no nontrivial continuous
characters. This group is a non locally quasi—convex metrizable Schwartz
group. [

5 Some classes of Schwartz groups

From now on, X will denote a completely regular Hausdorff space, and
Coo(X) the space of real-valued continuous functions on X, endowed with
the compact-open topology.

Recall that X is said to be hemicompact if it has a countable cobase of
compact sets, i. e. there exists a sequence (K,,) of compact subsets of X

8



such that any compact subset of X is contained in one of them. On the
other hand, X is said to be a k-space if a subset of X is open provided
that its intersection with every compact subset is open with respect to the
compact subset. In the literature hemicompact k-spaces are often called
k.-spaces (see [11] for a survey of results concerning this class).

Definition 5.1. X is said to satisfy the Ascoli theorem if every compact
subset of Ceo(X) is equicontinuous.

The famous Arzela—Ascoli theorem states that k-spaces fulfill this prop-
erty. However, in [22, p. 403] it is proved that arbitrary products of Cech
complete spaces satisfy the Ascoli theorem as well. Consequently the class
of spaces satisfying the Ascoli theorem is strictly wider than the class of
k-spaces. (E.g. Z! is not a k-space when I is an uncountable index set, see
[19, Problem 7J(b)].)

In order to obtain new examples of Schwartz groups, we will use some
results concerning free locally convex spaces and free topological Abelian
groups in the sense of Markov ([20]). Recall that for a completely regular
Hausdorff space X, the free Abelian topological group over X is the free
Abelian group A(X) endowed with the unique Hausdorff group topology
for which the mapping n : X — A(X), which maps the topological space
X onto a basis of A(X), becomes a topological embedding and such that
for every continuous mapping f : X — G, where G is an Abelian Hausdorff
group, the unique group homomorphism f : A(X) — G which satisfies
f= fo 7, is continuous.

Replacing topological Abelian groups by locally convex spaces and group
homomorphisms by linear maps we obtain the definition of the free locally
convex space L(X) over X.

For an overview of this theory we refer the reader to the surveys [23],
[28], and [9].

Our next theorem is based on the fact that the dual of a metrizable
locally convex space endowed with the compact open topology is a locally
convex Schwartz space (in [18, 16.4.2] it is proved that the dual of a metriz-
able space with the topology of precompact convergence is a Schwartz space
and from [18, 9.4.2] it follows that on the dual of a metrizable space the
topology of precompact convergence coincides with the compact-open topol-

ogy).

Theorem 5.2. If a hemicompact space X satisfies the Ascoli theorem then
L(X) is a Schwartz locally convex vector space.

Proof. The mapping
IL(X) = CoolX)igr D Xa = [f Y Aaf(2)]

is well defined, since L(X) is algebraically free over X and the linear func-
tionals f — f(x) are continuous for the compact-open topology on Ce,(X).
The injectivity of I follows from the fact that X is completely regular.

9



According to [25], the topology on L(X) is that of uniform convergence
on all equicontinuous and pointwise bounded subsets of X. But, since X
satisfies the Ascoli theorem, these are exactly the relatively compact subsets
of Ceo(X). Hence I is an embedding,.

Since X is hemicompact, C.,(X) is a metrizable locally convex space.
Hence C.,(X)%, is a Schwartz space. Since L(X) is a topological subspace
of Co(X)?,, it is a Schwartz space itself. O

Theorem 5.2 is a rather natural statement in locally convex space theory
which does not seem to have been observed until now. Its analogue for
groups is also true:

Corollary 5.3. If a hemicompact space X satisfies the Ascoli theorem then
A(X) is a locally quasi-conver Schwartz group.

Proof. For any Hausdorff completely regular space X, A(X) is a topological
subgroup of L(X) ([28, Th. 3]). By Theorem 5.2, L(X) is a Schwartz
locally convex space, hence a Schwartz locally quasi-convex group, so is its
subgroup A(X). O

Theorem 5.4. Every Hausdorff group G which is a hemicompact space and
satisfies the Ascoli theorem, is a Schwartz group.

Proof. According to Theorem 5.3, A(G) is a Schwartz group. Moreover, the
canonical mapping A(G) — G is a quotient mapping ([20] or (12.7) in [1]),
thus G is a Schwartz group. O]

Corollary 5.5. Fvery Hausdorff group which is a hemicompact k-space is
a Schwartz group.

Corollary 5.6. Let G be a metrizable group. Its character group G is a
Schwartz group.

Proof. 1t follows from 5.5 and the fact that the character group of a metriz-
able group is a hemicompact k-space (cf. (4.7) in [1] or Theorem 1 in
[8])- O

Remark 5.7. (a) In [3] it is shown that for a compact space X the free
Abelian topological group A(X) is a nuclear group if and only if X is
finite. So for an infinite compact set X, the groups A(X) and L(X)
are locally quasi—conver Schwartz groups but not nuclear.

(b) Let X be a completely regular space. The group C(X,T) of all contin-
uous functions of X into T, endowed with the compact—open topology,
15 a Schwartz group if and only if all compact subsets of X are finite.
[Taking into account the permanence properties given in Section 3
above, we can replace “nuclear” by “Schwartz” in the statement and
the proof of the analogous result involving nuclear groups ([1, 20.31]).]

The analogous result for the space of real valued functions C(X,R) is
contained in [18, Th. 10.8.1].
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