98 research outputs found

    Bistability, softening, and quenching of magnetic moments in Ni-filled carbon nanotubes

    Full text link
    The authors apply first-principles calculations to investigate the interplay between structural, electronic, and magnetic properties of nanostructures composed of narrow nanotubes filled with metallic nanowires. The focus is on the structural and magnetic responses of Ni-filled nanotubes upon radial compression. Interestingly, metastable flattened structures are identified, in which radially deformed nanotubes are stabilized by the interactions with the encapsulated wire. Moreover, our results indicate a quenching of the magnetic moment of the wire upon compression, as a result of the transfer of charge from the ss to the dd orbitals of the atoms in the wire.Comment: 4 pages, 4 figure

    Study of quantum dots (CdS, ZnS) toxicity in Danio rerio : preliminary results

    Get PDF
    Abstract in proceedings of the Fourth International Congress of CiiEM: Health, Well-Being and Ageing in the 21st Century, held at Egas Moniz’ University Campus in Monte de Caparica, Almada, from 3–5 June 2019.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.info:eu-repo/semantics/publishedVersio

    Study of the effects of nanoplastics ingestion in a freshwater fish (Danio rerio)

    Get PDF
    Abstract in proceedings of the Fourth International Congress of CiiEM: Health, Well-Being and Ageing in the 21st Century, held at Egas Moniz’ University Campus in Monte de Caparica, Almada, from 3–5 June 2019.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.info:eu-repo/semantics/publishedVersio

    Toxicity Evaluation of Quantum Dots (ZnS and CdS) Singly and Combined in Zebrafish (Danio rerio)

    Get PDF
    This work was supported by the Applied Molecular Biosciences Unit- UCIBIO which is financed by national funds from FCT/MCTES (UID/Multi/04378/2019) and by the Associate Laboratory for Green Chemistry- LAQV which is financed by national funds from FCT/MCTES (UID/QUI/50006/2019) and by the Marine and Environmental Sciences Centre (MARE) which is financed by national funds from FCT/MCTES (UID/MAR/04292/2019).The exponential growth of nanotechnology has led to the production of large quantities of nanomaterials for numerous industrial, technological, agricultural, environmental, food and many other applications. However, this huge production has raised growing concerns about the adverse effects that the release of these nanomaterials may have on the environment and on living organisms. Regarding the effects of QDs on aquatic organisms, existing data is scarce and often contradictory. Thus, more information is needed to understand the mechanisms associated with the potential toxicity of these nanomaterials in the aquatic environment. The toxicity of QDs (ZnS and CdS) was evaluated in the freshwater fish Danio rerio. The fishes were exposed for seven days to different concentrations of QDs (10, 100 and 1000 µg/L) individually and combined. Oxidative stress enzymes (catalase, superoxide dismutase and glutathione S-transferase), lipid peroxidation, HSP70 and total ubiquitin were assessed. In general, results suggest low to moderate toxicity as shown by the increase in catalase activity and lipid peroxidation levels. The QDs (ZnS and CdS) appear to cause more adverse effects singly than when tested combined. However, LPO results suggest that exposure to CdS singly caused more oxidative stress in zebrafish than ZnS or when the two QDs were tested combined. Levels of Zn and Cd measured in fish tissues indicate that both elements were bioaccumulated by fish and the concentrations increased in tissues according to the concentrations tested. The increase in HSP70 measured in fish exposed to 100 µg ZnS-QDs/L may be associated with high levels of Zn determined in fish tissues. No significant changes were detected for total ubiquitin. More experiments should be performed to fully understand the effects of QDs exposure to aquatic biota.publishersversionpublishe

    Does predation exacerbate the risk of endosymbiont loss in heat stressed hermatypic corals? molecular cues provide insights into species-specific health outcomes in a multi-stressor ocean

    Get PDF
    Ocean warming has been a major driver of coral reef bleaching and mass mortality. Coupled to other biotic pressures, corals' ability for acclimatization and adaptation may become compromised. Here, we tested the combined effects of warming scenarios (26, 30, and 32 degrees C) and predation (wound vs. no wound) in coral health condition (paleness, bleaching, and mortality), cellular stress responses (heat shock protein 70 kDa Hsp70, total ubiquitin Ub, and total antioxidant capacity TAC), and physiological state (integrated biomarker response index, IBR) of seven Scleractinian coral species, after being exposed for 60 days. Results show that although temperature was the main factor driving coral health condition, thermotolerant species (Galaxea fascicularis, Psammocora contigua, and Turbinaria reniformis) displayed increased paleness, bleaching, and mortality in predation treatments at high temperature, whereas thermosensitive species (Acropora tenuis, Echinopora lamellosa, and Montipora capricornis brown and green morphotypes) all died at 32 degrees C, regardless of predation condition. At the molecular level, results show that there were significant main and interactive effects of species, temperature, and predation in the biomarkers assessed. Temperature affected Hsp70, Ub, and TAC, evidencing the role of protein folding and turnover, as well as reactive oxygen species scavenging in heat stress management. Predation increased Hsp70 and Ub, suggesting the activation of the pro-phenoloxidase system and cytokine activity, whereas the combination of both stressors mainly affected TAC during moderate stress and Ub under severe stress, suggesting that redox balance and defense of homeostasis are crucial in tissue repair at high temperature. IBR levels showed an increasing trend at 32 degrees C in predated coral fragments (although non-significant). We conclude that coral responses to the combination of high temperature and predation pressure display high inter-species variability, but these stressors may pose a higher risk of endosymbiont loss, depending on species physiology and stress intensity.info:eu-repo/semantics/publishedVersio

    Hydrophobic DES Based on Menthol and Natural Organic Acids for Use in Antifouling Marine Coatings

    Get PDF
    Publisher Copyright: © 2023 The Authors. Published by American Chemical Society.Marine biofouling negatively impacts industries with off-shore infrastructures, such as naval, oil, and aquaculture. To date, there are no ideal sustainable, economic, and environmentally benign solutions to deal with this phenomenon. The advances achieved in green solvents, as well as its application in different industries, such as pharmaceutical and biotechnology, have promoted the emergence of deep eutectic systems (DES). These eutectic systems have applications in various fields and can be revolutionary in the marine-based industrial sector. In this study, the main objective was to investigate the potential use of hydrophobic DES (HDES) based on menthol and natural organic acids for their use as marine antifouling coatings. Our strategy encompassed the physicochemical characterization of different formulations, which allowed us to identify the most appropriate molar ratio and intermolecular interactions for HDES formations. The miscibility of the resulting HDES with the marine coating has been evaluated and proven to be successful. The Men/OL (1:1) system proved to be the most promising in terms of cost-production and thus was the one used in subsequent antifouling tests. The cytotoxicity of this HDES was evaluated using an in vitro cell model (HaCat cells) showing no significant toxicity. Furthermore, the application of this system incorporated into coatings that are used in marine structures was also studied using marine species (Mytilus edulis mussels and Patella vulgata limpets) to evaluate both their antifouling and ecotoxicity effects. HDES Men/OL (1:1) incorporated in marine coatings was promising in reducing marine macrofouling and also proved to be effective at the level of microfouling without viability impairment of the tested marine species. It was revealed to be more efficient than using copper oxide, metallic copper, or ivermectin as antifouling agents. Biochemical assays performed on marine species showed that this HDES does not induce oxidative stress in the tested species. These results are a strong indication of the potential of this HDES to be sustainable and efficiently used in marine fouling control technologies.publishersversionpublishe

    Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean

    Get PDF
    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems.info:eu-repo/semantics/publishedVersio

    Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed

    Get PDF
    Young juvenile Solea senegalensis were exposed to three sediments with distinct contamination profiles collected from a Portuguese estuary subjected to anthropogenic sources of contamination (the Sado estuary, western Portugal). Sedimentswere surveyed formetals (cadmium, chromium, copper, nickel, lead and zinc), ametalloid (arsenic) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide, dichloro-diphenyl-trichloroethane plus itsmetabolites), aswell as total organic matter, redox potential and particle fine fraction. The fish were exposed to freshly collected sediments in a 28-day laboratorial assay and collected for histological analyses at days 0 (T0), 14 (T14) and 28 (T28). Individual weighted histopathological indices were obtained, based on presence/absence data of eight and nine liver and gill pathologies, respectively, and on their biological significance. Although livers sustained more severe lesions, the sediments essentially contaminated by organic substances caused more damage to both organs than the sediments contaminated by both metallic and organic contaminants, suggesting a possible synergistic effect. Correlation analyses showed that some alterations are linked, forming distinctive histopathological patterns that are in accordance with the severity of lesions and sediment characteristics. The presence of large eosinophilic bodies in liver and degeneration of mucous cells in gills (a first-time described alteration)were some of the most noticeable alterations observed and were related to sediment organic contaminants. Body size has been found to be negatively correlated with histopathological damage in livers following longer term exposures. It is concluded that histopathological indices provide reliable and discriminatory data even when biomonitoring as complex media as natural sediments. It is also concluded that the effects of contamination may result not only from toxicant concentrations but also from their interactions, relative potency and sediment characteristics that ultimately determine bioavailability.peerreviewe

    Biochemical endpoints on juvenile Solea senegalensis exposed

    Get PDF
    Juvenile Solea senegalensis were exposed to fresh sediments from three stations of the Sado estuary (Portugal) in 28-day laboratory assays. Sediments revealed distinct levels of total organic matter, fine fraction, redox potential, trace elements (arsenic, cadmium, chromium, copper, nickel, lead and zinc) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide: dichloro diphenyl trichloroethane). Organisms were surveyed for contaminant bioaccumulation and induction of two hepatic biochemical biomarkers: metallothionein (MT) and cytochrome P450 (CYP1A), as potential indicators of exposure to metallic and organic contaminants, respectively. Using an integrative approach it was established that, although bioaccumulation is in general accordance with sediment contamination, lethality and biomarker responses are not linearly dependent of the cumulative concentrations of sediment contaminants but rather of their bioavailability and synergistic effects in organisms. It is concluded that metals and organic contaminants modulate both MT and CYP1A induction and it is suggested that reactive oxygen species may be the link between responses and effects of toxicity.peerreviewe

    A description of chloride cell and kidney tubule alterations in the flatfish Solea senegalensis exposed to moderately contaminated sediments from the Sado estuary (Portugal)

    Get PDF
    The effects of sediment-bound contaminants on kidney and gill chloride cells were surveyed in juvenile Solea senegalensis exposed to fresh sediments collected from three distinct sites of the Sado Estuary (Portugal) in a 28-day laboratorial assay. Sediments were analyzed for metallic contaminants, polycyclic aromatic hydrocarbons and organochlorines as well as for total organic matter, redox potential and fine fraction. The potential for causing adverse biological effects of each surveyed sediment was assessed by comparison of contaminant levels to available guidelines for coastal sediments, namely the Threshold Effects Level (TEL) and the Probable Effects Level (PEL). The Sediment Quality Guideline Quotient indices (SQGQ) were calculated to compare the overall contamination levels of the three stations. A qualitative approach was employed to analyze the histo/cytopathological traits in gill chloride cells and body kidney of fish exposed to each tested sediment for 0, 14 and 28 days. The results showed that sediment contamination can be considered low to moderate and that the least contaminated sediment (from a reference site, with the lowest SQGQ) caused lesser changes in the surveyed organs. However, the most contaminated sediment (by both metallic and organic xenobiotics, with highest SQGQ) was neither responsible for the highest mortality nor for the most pronounced lesions. Exposure to the sediment presenting an intermediate SQGQ, essentially contaminated by organic compounds, caused the highest mortality (48%) and the most severe damage to kidneys, up to full renal necrosis. Chloride cell alterations were similar in fish exposed to the two most contaminated sediments and consisted of a pronounced cellular hypertrophy, likely involving fluid retention and loss of mitochondria. It can be concluded that sediment contamination considered to be low or moderate may be responsible for severe injury to cells and parenchyma involved in the maintenance of osmotic balance, contributing for the high mortality levels observed. The results suggest that sediment-bound organic contaminants such as PAHs (polycyclic aromatic hydrocarbons) and PCBs (polychlorinated biphenyls) may be very toxic to the analyzed organs, especially the kidney, even when present in lowrisk concentrations.info:eu-repo/semantics/publishedVersio
    corecore