245 research outputs found

    RBFNN-based Minimum Entropy Filtering for a Class of Stochastic Nonlinear Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper presents a novel minimum entropy filter design for a class of stochastic nonlinear systems which are subjected to non-Gaussian noises. Motivated by stochastic distribution control, an output entropy model is developed using RBF neural network while the parameters of the model can be identified by the collected data. Based upon the presented model, the filtering problem has been investigated while the system dynamics have been represented. As the model output is the entropy of the estimation error, the optimal nonlinear filter is obtained based on the Lyapunov design which makes the model output minimum. Moreover, the entropy assignment problem has been discussed as an extension of the presented approach. To verify the presented design procedure, a numerical example is given which illustrates the effectiveness of the presented algorithm. The contributions of this paper can be included as 1) an output entropy model is presented using neural network; 2) a nonlinear filter design algorithm is developed as the main result and 3) a solution of entropy assignment problem is obtained which is an extension of the presented framework

    Proceedings of the UKACC Control Conference 2012

    Get PDF

    Robust Cooperative Guidance Law for Simultaneous Arrival

    Get PDF

    Distributed Adaptive Consensus Control of Nonlinear Output-Feedback Systems on Directed Graphs

    Get PDF
    This paper deals with consensus control in leader-follower format of a class of network-connected uncertain nonlinear systems by output feedback. Each subsystem is in the nonlinear output feedback form with unknown parameters, and the connection graph among the subsystems is directed. Distributed adaptive control inputs are designed to achieve the consensus control in the sense that the subsystem states asymptotically follow the subsystem at node 0 with no input, which is also known as the leader. The proposed adaptive control only uses relative output measurements and the local information of the connection to each subsystem, and hence the proposed adaptive control is fully distributed. The proposed scheme is different from the consensus output regulation schemes literature, and the leader plays a similar role as a reference model in the classic model reference adaptive control. (C) 2016 Elsevier Ltd. All rights reserved.National Natural Science Foundation of China [61473005, 11332001]; 111 Project [B08015]SCI(E)[email protected]; [email protected]

    Distributed Training for Multi-Layer Neural Networks by Consensus

    Get PDF
    • …
    corecore