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Distributed Initialization-Free Cost-Optimal
Charging Control of Plug-In Electric Vehicles for

Demand Management
Tianqiao Zhao, Zhengtao Ding, Senior Member, IEEE

Abstract—This paper considers the optimal charging problem
of plug-in electric vehicles (PEVs) on demand side management.
PEVs provide a promising alternative solution to reduction
of environmental pollution and fuel emission. With a large
number of PEVs connected to the grid, a well-designed charging
coordination approach is needed to release the impacts on the
power system. A distributed cooperative control strategy of PEVs
is proposed to meet system interests while respecting each PEV’s
charging constraint. The proposed strategy is distributed, which
only needs to be interacted with the neighbouring agents. Our
analysis shows that the proposed strategy solves the optimal
charging problem of PEVs in an initialization-free approach,
which avoids any procedure for initialization during PEVs’
charging process. Furthermore, the proposed strategy is robust
to the time-varying available charging power and plug-and-play
operations. The simulation studies validate the effectiveness of
the proposed distributed strategy.

Index Terms—Charging control, plug-in electric vehicle, dis-
tributed optimization, charging efficiency, consensus algorithm,
multiagent system

I. INTRODUCTION

WITH gradually depleting fossil fuels and deteriorating
environmental problems, massive attentions have been

focused on energy conservation and emission reduction among
the governments and the whole society. It is widely recognized
that electric vehicles (EVs) provide a promising alternative to
the traditional internal combustion engine (ICE) vehicles, as
they can reduce both environmental pollution and greenhouse
effect. Enabling this transformation to PEVs will bring poten-
tial benefits to the smart grid [1], [2].

The large-scale integration of PEVs may induce both ad-
verse effects and incentives simultaneously on future grids.
One of the apparent impacts is that the grid would be destabi-
lized with a higher peak demand due to the PEV integration
[3]. On the other hand, the grid can benefit from the integration
in load profile levelling and frequency regulation since PEVs
can be treated as a flexible load due to their charging property
[4]. Additionally, the satisfaction of PEVs’ customers should
be improved by designing a properly coordination strategy,
which can obtain a high acceptance rate of EVs’ utilization.
The main concerns of PEVs’ users are the total charging
time, the total charging cost and the state-of-charge (SoC)
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at their end of the charging process. Therefore, with the
development of vehicle-to-grid (V2G) technology [5], [6], it
is important to design efficient energy-management policies
to control and optimize the charging process of EVs for the
smart grid development [7]. The purpose of this paper is
to design a proper cooperative control strategy to maximize
benefits and satisfaction of PEVs’ customers while satisfying
the constraints of PEVs’ operations.

The coordination control and demand management problem
for PEVs can be formulated as an optimization problem in a
centralized manner [8]–[12]. Such kinds of control strategies
usually require a control centre, i.e., an aggregator, to receive
the charging status of each PEV from the charging station
and a powerful computation centre to process numerous in-
formation collected from PEVs [13]. However, with a large
number of EVs introduced as controllable units, traditional
centralized approaches may lose their efficiency due to in-
tractable computation burden, and they are sensitive to single-
point failures. To overcome those problems, the decentralized
PEVs coordination control strategies are presented in [14]–
[16]. In [14], a decentralized approach is proposed for each
charging station to regulate its charging power by responding
to an external signal. The decentralized approach only col-
lects PEV’s own information, which can relieve computation
burdens for the control centre. However, a central external
signal, i.e., a coordination control signal [17] or a real-time
pricing signal [18], is required to send to an aggregator. A
fully decentralized strategy only needs local information that is
presented in [15], [16]. However, it is difficult to adjust droop
coefficients to instantaneous operating conditions real-timely
when lacking broaderly available information in practice [19].

To address the above issues, results in literature consider
distributed optimal control strategies for EVs’ charging con-
trol [20]–[22]. In [22], a distributed optimal strategy is pro-
posed for the control of PEVs’ charging rate. However, this
control strategy relies on a specific initialization procedure
during each PEV charging cycle. Furthermore, the existing
distributed control strategies are proposed under undirected
communication topologies. Compared with directed graphs,
the undirected graphs require bi-directional communication
networks, which need more communication bandwidth. In
this paper, inspired by [23], we focus on designing a novel
distributed optimal control strategy to solve PEVs’ optimal
charging problem. The optimal strategy maximizes the welfare
and satisfaction of PEV’s customers, i.e., the charging cost and
the rate of change of SoC, by minimizing deviations between
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Fig. 1. Distributed demand management for PEVs charging

the charging current and the desired current value under the
conditions of individual PEV’s charging limit. As shown in
Fig. 1, the proposed distributed strategy is implemented based
on a multi-agent system (MAS) framework. Each PEV ex-
changes information with its own neighbours under a directed
communication graph. The computational and communication
burdens are shared among individual agents (PEVs) based
on this distributed scheme, and thus the proposed algorithm
can be flexible and scalable. To design a distributed control
strategy under a directed graph is much more challenging
than under an undirected one, due to the asymmetry of the
directed graphs. Our control design consists of two aspects: 1)
a consensus algorithm is applied to estimate the mismatches
between all PEV allocated powers and the total available
charging power on the directed graph; 2) with these mismatch
estimations, a nonsmooth analysis based dynamic system is
adopted for the dynamical update of the PEV charging power.
It should be noted that the developed algorithm can work
with time-varying communication topology. Additionally, in
the real application, there may exist initialized errors in load
satisfaction, the initialization-free is desirable for a practical
PEVs charging control. To this end, by characterizing the
omega-limit set of the trajectories of our strategy, we show
that the proposed algorithm does not require any specific
initializing procedure so that PEVs can start from any charging
power allocation. Therefore, the proposed distributed optimal
control strategy guarantees the plug-and-play operation during
the PEV charging process.

The remainder part of the paper is organized as follows.
Section II briefly introduces basic preliminaries. Section III
provides the problem statement of the coordinated PEV charg-
ing control. Section IV formulates the proposed distributed
control strategy. Section V presents the simulation results and
corresponding discussions. Finally, the conclusion is drawn in
Section VI.

II. PRELIMINARIES

In this section, we recall some preliminaries about graph
theory, nonsmooth analysis and differential inclusions that are
used in this paper. For l ∈ R, we denote Hl = {x ∈ R |
1T
nx = l}, where 1n = [1, 1 . . . ]T ∈ Rn. Let B(x, ε) =
{y ∈ Rn | ‖y − x‖ < ε}. A set-value map X : Rn ⇒ Rm

associates each value in Rn with a set in Rm. For u ∈ R, [u]+

denotes max{0, u}. Also, for B0 ∈ Rn, B0 = [b10, . . . , bi0]T ,
where bi0 6= 0 denotes ith PEV can receive the information
of the total available charging power; bi0 = 0 otherwise; and
1TnB0 = 1.

A. Graph Theory

Following [24], a directed graph G = (V, E), where V =
{ν1,. . . , νn} denotes the node set and E ∈ V × V is the
edge set. If (νi, νj) ∈ E means node νi is a neighbour of
node νj . A directed path is a sequence of nodes connected
by edges. A directed graph contains a directed spanning tree
if there exists a root node that has directed paths to all other
nodes. A directed graph is strongly connected if there exists a
directed path that connects any pair of vertices. For a directed
graph G, the adjacency matrix A = [aij ] in Rn×n is defined
by aii = 0, aij = 1 if (νj , νi) ∈ E and aij = 0 otherwise.
A weighted graph G = (V, E , A) consists of a digraph (V ,
E) and an adjacency matrix A ∈ Rn×n

≥0 with aij > 0 if and
only if (i, j) ∈ E . The weighted in-degree and out-degree of
i are defined as din(i) =

∑n
j=1 aij and dout(i) =

∑n
j=1 aji,

respectively. The Laplacian matrix L = [Lij ] ∈ Rn×n asso-
ciates with G is defined as Lii =

∑
j 6=i aij and Lij = −aij ,

i 6= j. G is defined as weight-balanced if dout(ν) = din(ν),
for all ν ∈ V iff 1TnL = 0 iff L+LT is positive semi-definite.
If G is strong connected and weight-balanced, zero is a simple
eigenvalue zero of L+ LT . In this case, there is a fact that

xT (L+ LT )x ≥ λ2(L+ LT )

∥∥∥∥x− 1

n
1Tn1nx

∥∥∥∥2

, (1)

where λ2(L+LT ) is the smallest non-zero eigenvalue of L+
LT .

B. Nonsmooth Analysis and Differential Inclusions

Following [25], [26], we present some basic notions of
nonsmooth analysis and differential inclusions, respectively.
A function f : Rn → Rm is locally Lipschitz at x ∈ Rn

if for y, y
′ ∈ B(x, ε),

∥∥∥f(y)− f(y
′
)
∥∥∥ ≤ Lx

∥∥∥y − y′
∥∥∥, where

Lx, ε ∈ (0, ∞). A function f : Rn → Rm is said regular at
x ∈ Rn if, for all ν ∈ Rn, the right and generalized directional
derivatives of f at x in the direction of ν coincide [26]. A
function is regular at x, if it is continuously differentiable at
x. A convex function is regular.

Considering a set-valued map H: Rn ⇒ Rn, a differential
inclusion on Rn is defined by

ẋ ∈ H(x). (2)

The set of equilibria of (2) is denoted by Eq(H) = {x ∈
Rn|0 ∈ H(x)}. A locally Lipschitz function f : Rn ⇒ R, the
set-valued Lie derivative LHf,Rn ⇒ R, of f with respect to
(2) is defined as

LHf = {b ∈ R | ∃v ∈ H(x) s.t. αT v = b for all α ∈ ∂f(x)}.
(3)

The detailed definitions of nonsmooth analysis and differ-
ential inclusions are shown in Appendix.
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III. PROBLEM FORMULATION FOR THE BATTERY
CHARGING PROBLEM OF PEVS

We assume that multiple PEVs are plugged into a charging
station under a specific optimal charging control to schedule
their charging profiles during the total charging duration time
T . The total charging power capacity is known for the charging
station during the PEVs charging period. Each PEV is charged
with a constant charging current to reach their desired SoC.

The objective of this paper is to design an optimal control
method in terms of the economic factors of the PEV charging
process, such as the total charging time, the total charging
cost, etc. To address this purpose, the modelling of the PEV
battery and its charging property is firstly investigated. The
existing results on the PEV battery modelling mainly consider
two aspects: a) equivalent circuit models [27], [28] and b)
electrochemical models [29]. For the equivalent circuit models,
they are mainly used for online estimation and power manage-
ments, and the electrochemical models are usually adopted
for battery design optimization, health characterization, and
health-conscious control.

A. Battery Modelling
For the purpose of the optimal charging control design, an

equivalent circuit model is adopted in [30], which regards a
Li-ion battery as an ideal energy storage unit. This model has
been validated based on the test data [31]. All the analyses
in this paper are based on the approximate battery model that
the battery parameters are independent of depth of discharge,
SoC and temperature. Such assumptions are widely applied in
[22], [32], [33] for the optimization and control design.

The model is described as a constant voltage source in series
with a constant resistance to consider the resistive energy
losses. This model can be represented as

Vi = Vo,i +RiIi, (4)

µ̇i =
Ii
Qi
, (5)

where Vi is the terminal voltage, Vo,i denotes the open
circuit voltage, Ri represents the equivalent battery internal
resistance, Ii is the charging current, Qi represents the battery
charge capacity, and µi is the battery state of charge SoC, of
ith PEV, respectively. Note that Vo,i can vary with SoC. In
this paper, we treat it as a constant voltage source since the
variation of Vo,i is very small within 25% − 90% SoC for
lithium-ion batteries [33].

When a PEV is being charged after plugging in, the power
consumed by the ith PEV can be represented by multiplying
the terminal voltage and its charging current,

PEV,i = Vo,iIi +RiI
2
i , (6)

where PEV,i is the instantaneous charging power. Hence, the
battery charging current can be expressed as

Ii =
1

2Ri
(
√

4RiPEV,i + V 2
o,i − Vo,i). (7)

Note that in our paper, the battery charging current and
power are positive during charging process and negative for
discharging otherwise.

B. Constraints

The physical limits are represented by the following con-
straints.

1) Global Constraint of the Charging Power Allocation:
For a charging station, there is a limit that the total amount
of charging power of all PEVs should not exceed the total
available power Ptotal, which is modeled as a upper bound of
the utility’s power delivery

n∑
i=1

PEV,i ≤ Ptotal. (8)

2) Local Constraint of Each PEV: The allocated charging
power of each PEV is locally bounded by different physical
factors, such as the upper bound of outlet’s power output,
the charging current’s tolerance and the charging level [21].
One local constraint is proposed to map the physical above
constraints, i.e.,

0 ≤ PEV,i ≤ PM
EV,i (9)

where PM
EV,i is the maximum charging power of ith PEV that

considers the above limitations.

C. Optimization Problem Formulation of PEVs

The charging time length over the charging duration Ti of
ith PEV is denoted by ∆T , and the time slots is expressed as
Ki = Ti

∆T , k ∈ Ki := {1, ...,Ki}.
In [34], a real-time price model is formulated as the

derivative of the generation supply cost, which represents
the marginal cost of the generation supply. Therefore, based
on a similar concept in [35], the generation supply cost
of ith PEV is supposed to Cg,i = 1

2a(
∑Ki

k=1 PEV,i(k))2 +

b(
∑Ki

k=1 PEV,i(k)) + c with proper parameters a, b, and c.
Therefore, a real-time price model for ith PEV is adopted
linearly with respect to its total demand during the charging
duration, such that

Pre,i = a

Ki∑
k=1

PEV,i(k) + b. (10)

Note that the real-time price model is widely applied for
the coordination of PEV’s charging process [36], [37].

Furthermore, the ith PEV needs to reach its desired SoC,
µ∗i by its deadline that is determined by

Ki∑
k=1

PEV,i(k)∆Ti = (µ∗i − µi(0))Qi. (11)

By substituting (11) into (10), the price model is expressed
as

Pre,i = a
(µ∗i − µi(0))Qi

Ti
+ b. (12)

The satisfaction of PEV’s customers from the charging
service is usually dependent upon the SoC of their vehicles
when finishing the charging process. Therefore, a concave
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utility function is defined to represent the satisfaction of ith
PEV customer, which relates to changing rate of SoC, such as

UEV,i(µ̇i) =−

(
Pre,i

Ki∆T
2

2

)
µ̇i

2

+
(
Pre,i(µ

∗
i − µi(0))∆T

)
µ̇i. (13)

It should note that the utility function has the following
properties:
• The satisfaction of PEV’s customers is increasing accord-

ing to the changing rate of SoC.
• The utility function has the decreasing marginal utility.
The utility function has been widely applied in [36], [38]–

[40] for PEV charging coordination problems. From the users’
perspective, the utility function of PEV’s users should be
maximized when PEVs are connected to the charging station
through a Smart Charger. The Smart Charger can regulate
the charging current to maximize consumers’ satisfaction. It
is desired to discover an optimal charging current for each
plugged PEV according its own utility function. Therefore, the
optimal charging current reference for each PEV is formulated
in following. By substituting (5) to (13), the utility function
is rewritten as

UEV,i = −

(
Pre,i

Ki∆T
2

2Q2
i

)
I2
i +

(
Pre,i(µ

∗
i − µi(0))∆T

Qi

)
Ii

(14)
Then, by taking the derivative of (14) with respect to Ii and

equating to zero, the bliss point of the charging current of the
utility function is

Irefi = arg max
Ii

(Ui(µ̇i)) =
µ∗i − µi(0)

Ti
Qi, (15)

where Ti = Ki∆T .
To maximize the satisfaction of each PEV user, the PEV

should be ideally charged following the desired charging
current obtained in (15). However, due to the total available
charging power constraints, it is almost impossible to realize
the desired current charging for all PEVs. Therefore, inspired
by a similar formulation process in [22], the objective function
for PEVs is formulated by minimizing the difference between
charging current and the desired reference, i.e., fi(PEV,i) =

εi(I
ref
i − Ii)2. The total deviations are denoted by f(PEV )

with PEV = [PEV,1, . . . , PEV,n]T ∈ Rn. With (7), the
objective function is written as

Min f(PEV ) =Min
n∑

i=1

εi(I
ref
i − Ii)2

=Min
n∑

i=1

εi{(Irefi )2 +
V 2
o,i

2R2
i

+
2Irefi Vo,i

Ri

−Vo,i + 2RiI
ref
i

2R2
i

√
4RiPEV,i + V 2

o,i +
PEV,i

Ri
},

(16)

where εi is a non-negative weight given by

εi =
1

µiTi + κ
. (17)

This prior weight is introduced in terms of the current SoC
and the total charging time of ith PEV. A small positive value,
κ, is set to avoid singularity. The weight can prioritize PEVs
based on the time of charge and the remaining SoC to be
charged.

The first three terms in (16) are independent of the decision
variable PEV,i, which can be neglected from the objective
function. Hence (16) can be further simplified as

Min
n∑

i=1

εi

(
PEV,i

Ri
− Vo,i + 2RiI

ref
i

2R2
i

√
4RiPEV,i + V 2

o,i

)
s.t.

0 ≤ PEV,i ≤ PM
EV,i, (18)

Furthermore, for the purpose of fully using the available
power, we assume that

n∑
i=1

PEV,i = Ptotal. (19)

The objective function (18) is convex, and the set of
charging power allocations satisfying the box constrain is
Fbox = {PEV,i ∈ R | 0 ≤ PEV,i ≤ PM

EV,i}. We denote
the feasibility set of the above optimal problem as FEV =
{PEV,i ∈ R | 0 ≤ PEV,i ≤ PM

EV,i and 1TnPEV = Ptotal}.
Besides, the solution is denoted by F∗EV , which is compact
since FEV is compact.

A centralized strategy can solve the above problem, but it
requires a powerful control center to receive all the infor-
mation of each PEV for data management, communication
and processing. In this paper, our objective is to design
a distributed cooperative control algorithm such that it can
optimally allocate charging power of all PEVs based on their
priorities. Furthermore, from any initial conditions, this novel
charging control algorithm can accommodate plug-and-play
operations and perform well under the time-varying supply-
demand condition in an isolated power system.

IV. DISTRIBUTED OPTIMAL SOLUTION

In this section, a distributed control algorithm is proposed
to solve the optimal charging control problem.

A. Problem Reformulation

The inequality constraint may cause difficulties in the opti-
mal control design. Thus, the exact penalty function method
is utilized to tackle this problem. The optimization problem
(18) is reformulated by rewriting the objective function of ith
PEV, i.e.

gi(PEV,i) = fi(PEV,i) +
1

ε
([PEV,i − PM

EV,i]
+). (20)

and g(PEV ) =
∑n

i=1 gi(PEV,i), which subjects to the avail-
able charging power constraint 1T

nP
∗
EV = Ptotal.

Note that g(PEV ) is convex, locally Lipschitz, and contin-
uously differentiable on R except at PEV,i = PM

EV,i. Accord-
ing to the Proposition 5.2 in [23], the original optimization
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problem (18) and the reformulated optimal charging problem
coincide if there exists ε ∈ R>0 such that

ε <
1

2maxPEV ∈FEV

∥∥5g(PEV )
∥∥
∞
. (21)

In our control design, we assume that (21) holds this
condition.

A useful Lemma based on [41] is introduced as follows
Lemma 4.1: Since g(PEV,i) is convex, locally Lipschitz,

and continuously differentiable except at PEV,i = PM
EV,i, the

charging optimal problem has a solution P ∗EV ∈ Rn if and
only if, there exists σ ∈ R such that

σ1n ∈ ∂g(P ∗EV ) and 1TnP
∗
EV = Ptotal. (22)

B. Distributed Algorithmic Design

Inspired by the dynamic average consensus estimation
method proposed in [42], a distributed optimal solution is
presented to the optimal charging problem, which allows
the power allocation of each PEV to start from any initial
conditions. The optimal charging protocol is formulated as

ṖEV,i ∈ −
∑

j∈N(i)

aij(∂gi(PEV,i)− ∂gj(PEV,j)) + γxi,

(23a)
ẋi =− β(xi − (bi0Ptotal − PEV,i))

− α
∑

j∈N(i)

aij(xi − xj)−
∑

j∈N(i)

aij(ηi − ηj), (23b)

η̇i =αβxi, (23c)

where α, β, γ ∈ R>0 are the parameters to be designed,
N(i) denotes the neighbour set of ith PEV. In (23a), the
first term explores the minimization of the total cost, and a
feedback element, γxi, enforces ith PEV to satisfy the supply-
demand equality condition. Furthermore, xi is designed to
track the average signal 1

n (Ptotal − 1TnPEV (t)) for each PEV
i ∈ {1, . . . , n}. Unlike [43], the proposed algorithm solves the
optimal problem regardless of initial values of (P0, x0, η0), and
as proved by [44], the proposed dynamic estimation method
is a low-pass filter that ensure robust average consensus
estimation in a sensor network.

C. Convergence Analysis

For convergence analysis, the algorithm is rewritten in a
compact form represented by the set-valued map XEV

ṖEV ∈ −L∂g(PEV ) + γx, (24a)
ẋ = −αLx− β(x− (B0Ptotal − PEV ))− Lη, (24b)
η̇ = αβx, (24c)

where x, η are the column vectors of xi, and ηi respectively.
We characterize the ω-limit set of the trajectories of (24)

with any initial conditions in Rn × Rn × Rn.
Lemma 4.2: The ω-limit set of the trajectories of (24) with

any initial conditions in Rn×Rn×Rn is contained inHPtotal
×

H0 ×H0.

TABLE I
PARAMETERS OF PEV BATTERIES

Vo,i(V ) Ri(Ohm) Qi(A.h) SoC(0) SoC∗ PM
EV,i(kW )

Vehicle 1 303 1.13 25 0.20 0.90 3.3
Vehicle 2 292 1.08 30 0.24 0.85 3.3
Vehicle 3 289 1.17 28 0.30 0.80 3.3
Vehicle 4 301 1.12 29 0.18 0.85 3.3
Vehicle 5 298 1.07 32 0.25 0.90 3.3
Vehicle 6 306 1.14 35 0.21 0.90 3.3

Proof: See appendix. B
Based on Lemma 4.2 and the Proposition A.1 in [43], we

now ready to establish that, with (24), the trajectories of the
charging power allocations of PEVs converge to the solution
of the optimal charging problem.

Theorem 4.1: The trajectories of (24) converge to the
solution of the optimal charging problem if α, β, γ ∈ R>0

satisfy the condition that

γ

αβλ2(L+ LT )
+
βλmax(LTL)

2
< λ2(L+ LT ). (25)

Proof: See appendix. C
Remark 4.1: Assuming that each PEV is able to estimate the

power losses of its adjacent transmission lines, the proposed
solution could be extended to handle the transmission losses
during the charging process of PEVs proposed in [45].

V. SIMULATION RESULTS AND ANALYSIS

In the simulation studies, several cases are used to validate
the effectiveness of the proposed distributed optimal strategy.
The algorithm is tested for 5-PEV system on a PC with
Inter(R) Core(TM) i7-4770 CPU @ 3.40GHz and 4GB RAM
in MATLAB/Simulink. The parameters of the PEV battery
are listed in Table I, which are taken from the typical battery
charging profiles provided in [46]. The PEVs are assumed
to be able to interact with their adjacent neighbours in the
communication network. The total available charging power
can be accessible by several PEVs with 1TnB0 = 1. Without
loss of generality, we assume that PEV1 knows the total
available charging power.

A. Algorithm Implementation

The proposed optimal solution can be implemented in a
MAS framework. The step-by-step algorithm for ith PEV
agent is shown in Algorithm. 1, and Fig. 2 gives the general
operation structure of ith agent. The communication topology
for PEVs charging is shown as Fig. 3. Each PEV is plugged
into the charging station through a recharging socket, which
is assigned as an agent. The recharging socket only interacts
with its neighboring agents to exchange the information, i.e.,
(PEV,i, xi). Each agent deploys the proposed algorithm (24)
in Section IV which will provide an optimal power charging
reference for all PEVs.

Remark 5.1: The applicability of the proposed algorithm
can be investigated by calculating the minimum amount data
exchanged by each node. To this end, a simulation study is
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TABLE II
TOTAL AMOUNT OF DATA OF THE COMMUNICATION LINE BETWEEN PEV1

AND PEV2

Num of Variable bits
(Single-precision) Sample Rate Data

P1 1 32bit 100Hz 3200bps
z1 1 32bit 100Hz 3200bps
η1 1 32bit 100Hz 3200bps

Total amount of data 9600bps

provided to show the minimum amount of data exchanged by
each node on the communication network. In our simulation
study, the communication network is designed as a directed
graph, and the communication channel between each PEV
has the same tolerance for the data transmission. Without
loss of generality, we calculated the date exchanged in the
communication channel between PEV1 and PEV2. The sample
time is set 0.01s (100Hz). Our algorithm has 3 states for each
agent that requires 3 real numbers. The amount of data of
one directed communication channel from PEV1 to PEV2 can
be calculated as Table II. As the result shown, the minimum
amount of data of the communication channel from PEV1 to
PEV2 is 9.6Kbps.

Remark 5.2: The results of our simulation studies are
obtained based on the rigorous parameter selection, which
is taken from a standard charging profile, and the constraint
of the charging rate is set based on the Level 2 charging
profile. As a result, the proposed algorithm is well-adapted
to a real PEV charging problem. Furthermore, as the Remark
5.1 shown, the minimal amount of data exchanged by each
PEV may be compatible with the throughput of modern
communication systems. With the above analysis, it is shown
that the proposed algorithm is potentially implemented in a
testbed.

Algorithm 1 DISTRIBUTED OPTIMAL CHARGING CONTROL ALGORITHM

Initialization:
For i ∈ {1, . . . , n}
PEV,i = PEV,i(0), xi = xi(0), ηi = ηi(0)

Consensus Algorithm:
Select α, β, γ ∈ R>0

Check If variables the inequality (25),{
Yes, Flag = 1→ Continue
No, Flag = 0→ Go back to Select

(26)

Coordination
Each PEV i communicates with its adjacent PEV agent,
and updates (PEV,i, xi, ηi) according to (23a)-(23c) in Sec-
tion IV.
End if Each PEV achieves the optimal operation

B. Simulation Studies

In the case studies, the designed parameters are chosen as
α = 12, β = 0.4, γ = 2, ε = 0.0085, which satisfy the condi-
tion in (21), and (25) specified in Theorem 4.1. In Case 5.1,
we study the optimal charging problem with the constant total

Initialization 
Procedure 

Distibuted Optimal 
solution(25a) - (25c)  

Local Intial 
Information

Neighboring PEV 
Agent j 

(PEV,j, xEV,j)

(PEV,i, xEV,i)

Neighboring PEV 
Agent k

 ith PEV
P*

EV

ith PEV Agent

Fig. 2. The general operation structure of ith agent

Fig. 3. The communication topology for PEVs charging

available charging power while the plug-and-play operation
is considered. Case 5.2 investigates the performance of the
proposed strategy under the time-varying available charging
power supply. Finally, the scalability analysis is validated in
Case 5.3.

Case 5.1:
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Fig. 5. Total allocated charging power updates for PEVs
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Fig. 6. Allocated charging power updates for PEVs
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Fig. 7. Supply-demand mismatch updates for PEVs

In this case, the total available charging power is assumed
as 12kW. As shown in Figs. 4 - 5, the charging rates of all
PEVs quickly converge to their optimal values, while the total
allocated charging power converges to 12kW, i.e., the total
available charging power.

Now, the plug-and-play adaptability of our strategy is in-
vestigated, e.g., 1) an EV arrives in the charging station at
an arbitrary time; 2) an EV departs from the charging station
when its SoC is charged to its desired value. The total available
charging power is still 12kW. The communication network is
weight-balanced, when PEVs are moving in and out. Here
an imbalance-correcting algorithm [47] is applied to our
communication network design. Supposed that each agent can
correct its weight through sending and receiving information
from its neighbours such that the digraph adapts to be weight-
balanced in a finite time. Figs. 6 - 8 show the charging power
allocations of PEVs during their charging process, the demand-
supply mismatch and the SoC of PEVs. As shown in Fig. 6,
the charging power allocations of each PEV converge to their
optimal values. When one PEV, e.g., PEV6, arriving in the
charging station, the charging power allocation can converge
to the optimal values with the proposed strategy. After PEV3
departing from the charging station, the proposed strategy
guarantees that the rest of PEVs can still reach their optimal
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Fig. 8. The SoC updates for PEVs
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Fig. 9. Allocated charging power updates for PEVs
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Fig. 10. Supply-demand mismatch updates for PEVs

charging rates by sharing the total available charging power.
As shown in Fig. 7, during the whole PEV charging process,
the deviations between the total available charging power and
the total allocated charging power are very small. Fig. 8 gives
the SoC update of PEVs charging process when PEV departing
from or arriving at the charging station. When PEV6 arriving
at the charging station at a random time, its SoC starts from
20% and increases during charging process. The SoC of PEV3
drops to zero because it has been charged to the desired
SoC, and it is ready to depart from the station. Therefore,
the proposed strategy will have little effect on the frequency
disturbance of the system, which may be applied to isolated
systems such as an autonomous microgrid.

Case 5.2:
The effectiveness of the proposed strategy under a time-

varying supply-demand condition is validated in this case.
An isolated microgrid consisting of distributed generators
(DGs) and loads is considered here. Due to the intermittent
of renewable energy sources, particularly the wind power
generation, the generated power may fluctuate and cause the
frequency fluctuation problem in the microgrid. PEVs that
installed in the customer side are employed as a flexible
load for alleviate frequency fluctuation [48]. To this end, we
consider a time-varying non-PEV load condition with the total
available power given by Ptotal = 12000 + 700sin(0.005t).
The communication network and the other operating condi-
tions are the same as those in Case 5.1. As shown in Figs. 9
- 10, the allocated charging powers converge to their optimal
values under the time-varying supply-demand condition, while
the mismatch between supply and demand power converges to
zero. In addition, Fig. 10 shows the proposed strategy effec-
tively offsets the supply-demand mismatch, which will help
with frequency fluctuation (caused by intermittent renewable
sources) regulation.

Case 5.3:
The scalability of the proposed strategy is validated. To do
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Fig. 11. Allocated charging power updates for 30-PEVs
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Fig. 12. Supply-demand mismatch updates for 30-PEVs

so, we implement the optimal control strategy to both 30-PEV
system and 60-PEV system, and The total available charging
power is supposed to be 60kW and 120kW, respectively.
The communication network is weight-balanced and strongly
connected.

As shown in Fig. 11 and Fig. 13, the proposed strategy can
guarantee the allocated charging powers to converge to their
optimal values within 25s. Figs. 12 - 14 illustrate the deviations
of demand and supply power can converge to zero. It is
worth noting that the convergence of the proposed algorithm
is mainly determined by the parameter selection and the
knowledge of the communication network. The convergence
can be ensured for a large number fleet by maintaining the
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Fig. 13. Allocated charging power updates for 60-PEVs
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Fig. 14. Supply-demand mismatch updates for 60-PEVs

inequality (25).
It should be noted that the proposed algorithm is applicable

in a real scenario since the required communication network
for data transmission is acceptable for a real communication
network and the computational cost is acceptable for an
embedded system running.

VI. CONCLUSION

In this paper, a cooperative distributed control strategy
is proposed for PEVs optimal charging by maximizing the
welfare and satisfaction of PEV customers while considering
the PEVs’ charging constraints. The proposed distributed
algorithm is implemented based on MAS-framework under
a directed communication graph, which is robust to single-
link failures compared with the centralized methods. The
initializing procedures are no longer needed in our control
design. Thus, the PEVs can start from any charging power
allocations. In addition, its convergence does not rely on
the specific graph, which admits the plug-and-play operation
during PEV charging process. Furthermore, the proposed dis-
tributed strategy can handle the time-varying supply-demand
mismatch problem in isolated systems.

APPENDIX

A. Nonsmooth Analysis and Differential Inclusions

For any ε ∈ (0,∞), a set-valued map H : Rn ⇒ Rm is said
upper semi-continuous at x ∈ Rn if there exists δ ∈ (0,∞)
such that H(y) ⊂ H(x)+B(0, ε) for all y ∈ B(x, δ). Also, H
is locally bounded at x ∈ <n if there exist ε, δ ∈ (0,∞) such
that ‖z‖ ≤ ε for all z ∈ H(y) and y ∈ B(x, δ). Let Ωf be
the set of points where f is not differentiable, the generalized
gradient of f is defined as

∂f(x) = co{ lim
k→∞

Of(xk) | xk → x, xk 6∈ Ωf ∪ S}

where co denotes convex hull and S is a set of measure zero.
A solution of ẋ ∈ H(x) on [0, T ] ⊂ R is defined as an

absolutely continuous map x : [0, T ] → Rn that satisfies (2)
for almost all t ∈ [0, T ]. Also, if H is locally bounded, upper
semi-continuous, and takes non-empty, compact, and convex
values, then the existence of solutions is guaranteed.

B. Proof of Lemma 4.2

Proof: Defining ψ(t) = 1T
nPEV (t)− Ptotal, one has

ψ̇(t) = 1Tn ṖEV (t) = 1Tnγx(t), (27)

and

ψ̈(t) = 1Tnγẋ(t)

= −1T
nβγx(t) + 1Tnβγ(B0Ptotal − PEV (t))

= −βγψ(t)− βψ̇(t). (28)

The system can be rewritten as

ż = Az, (29)
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where z = [z1, z2]T , and z1 = ψ, z2 = ψ̇. The system matrix,
A, is obtained as

A =

[
0 1

−βγ −β

]
.

Let M ∈ R2×2 be

M =
1

2γβ2

[
β2 + βγ + (βγ)2 β

β 1 + βγ

]
, (30)

which satisfies ATM +MA+ I = 0. Define Vz = zTMz as
a Lyapunov function candidate for (29), and the derivative of
Vz is

V̇z = −zT z. (31)

Therefore, we can deduce that lim
t→∞

zi(t) = 0 for i = 1, 2,
and the convergence rate is exponential. Furthermore, zi(t) =
0 implies that 1TnPEV (t)→ Ptotal and 1Tnx(t)→ 0. Note that
1Tn η̇ = 0, as 1Tnx(t)→ 0.

C. Proof of Theorem 4.1

Proof: A change of coordinates is introduced to shift
the equilibrium point of (24) to the origin. With η̄ = Lη −
β(B0Ptotal − PEV ), the set-valued map XEV is transformed
as

XEV (PEV , x, η) ={[−Lξ + γx,−(αL+ βI)x− η̄,
(αβL+ γβI)x−βLξ]T ∈ R3n | ξ ∈ ∂g(PEV )}. (32)

Consider a candidate Lyapunov function V2 : R3n → R≥0,

V2 = g(PEV ) +
1

2
γβ‖x‖2 +

1

2
‖βx+ η̄‖2 , (33)

and let ϕ1 = x, ϕ2 = βx+ η̄, then

V2 = g(PEV ) +
1

2
γβ‖ϕ1‖2 +

1

2
‖ϕ2‖2 . (34)

Define the overall coordinate transformation T : R3n → R3n

as

[PEV , ϕ1, ϕ2]T = T (PEV , x, η)

= [PEV , x, βx+ Lη − β(B0Ptotal − PEV )]T .
(35)

Next step is to prove that, in the new coordinate, the
trajectories of (24) converge to the set

F̄op = T (F∗op) = F∗EV × {0} × {0}. (36)

Note that g is locally Lipschitz and regular, while the set-
valued map XEV is locally bounded, upper semi-continuous,
and takes non-empty, compact and convex values. Take the set-
valued Lie derivative LXEV

V2 : Rn ⇒ R of V2(PEV , ϕ1, ϕ2)
along the XEV ,

LXEV
V2 = {−ξTLξ + γξTϕ1 − γαβϕT

1 Lϕ1

− β‖ϕ2‖2 − βϕT
2 Lξ | ξ ∈ ∂g(PEV )}. (37)

Denote δ = [δ1, δ2, δ3]T , where δ1 = ξ ∈ ∂g(PEV ), δ2 =
βγϕ1 and δ3 = ϕ2 respectively. A continuous function is
defined as w: R3n × R3n → R3n,

w(PEV , ϕ1, ϕ2, δ) =[−Lδ1 + γϕ1,−αLϕ1 − ϕ2,

βγϕ1 − βϕ2 − βLδ1]T , (38)

and hence dynamics (32) can be expressed as

XEV (PEV , ϕ1, ϕ2) ={w(PEV , ϕ1, ϕ2, δ) |
δ ∈ ∂V2(PEV , ϕ1, ϕ2)}. (39)

Since the directed graph G is strongly connected and weight-
balanced with the fact that 1Tnϕ1 = 0 for (PEV , ϕ1, ϕ2) ∈
HPtotal

×H0 ×H0,

δTw(PEV , ϕ1, ϕ2, δ) = −1

2
ξT (L+ LT )ξ + γξTϕ1

− 1

2
αβγϕT

1 (L+ LT )ϕ1 − β‖ϕ2‖2 − βϕT
2 Lξ

≤ −1

2
λ2(L+ LT )

∥∥∥∥ξ − 1

n
1Tn1nξ

∥∥∥∥2

+ γ(ξ − 1

n
1T
n1nξ)Tϕ1 −

1

2
αβγλ2(L+ LT )‖ϕ1‖2

− β‖ϕ2‖2 − βϕT
2 L(ξ − 1

n
1Tn1nξ) (40)

Defining ϑ = ξ− 1
n (1Tn1nξ), and φT = [ϑT , ϕT

1 , ϕ
T
2 ], we have

δTw(PEV , ϕ1, ϕ2, δ) ≤ φTRφ (41)

where

R =


− 1

2λ2(L+ LT )I 1
2γI − 1

2βL
T

1
2γI − 1

2αβγλ2(L+ LT )I 0

− 1
2βL

T 0 −βI

 .
Applying the Schur complement, R ∈ R3n×3n is negative

definite if

− 1

2
λ2(L+ LT )I

−
[

1
2γI − 1

2βL
T
] [− 1

2αβγλ2(L+ LT )I 0

0 −βI

]−1 [ 1
2γI

− 1
2βL

]
= −1

2
λ2(L+ LT )I +

γ

2αβλ2(L+ LT )
I +

β

4
LTL,

is negative definite, which is guaranteed by (25). Hence,
δTw(PEV ,ϕ1, ϕ2, δ) ≤ 0, and δTw(PEV , ϕ1, ϕ2, δ) = 0
if and only if φ = ϕ1 = ϕ2 = 0. Reasoning with Lemma
A.1 [43], we conclude that 0 ∈ LXEV

V2 if and only if there
exists σ ∈ R such that σ1n ∈ ∂g(P ∗EV ). With Lemma 4.1,
P ∗EV ∈ FEV being a solution of the optimal charging problem.

The last step is to show the trajectories of T are bounded.
This follows similar lines in [43], and therefore we omit it
here due to the page limitation.
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