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Distributed Multiobjective Optimization for Network
Resource Allocation of Multiagent Systems

Zhongguo Li , Student Member, IEEE, and Zhengtao Ding , Senior Member, IEEE

Abstract—In this article, a distributed multiobjective
optimization problem is formulated for the resource allocation of
network-connected multiagent systems. The framework encom-
passes a group of distributed decision makers in the subagents,
where each of them possesses a local preference index. Novel
distributed algorithms are proposed to solve such a problem
in a distributed manner. The weighted Lp preference index is
utilized in each agent since it can provide a robust Pareto solu-
tion to the problem. By using distributed fixed-time optimization
methods, the Lp preference index is constructed online without
specifying the unknown parameters. Then, it is proved that the
problem admits a unique Pareto solution. By exploiting consen-
sus and gradient descent techniques, asymptotic convergence to
the optimal solution is established via Lyapunov theories. Distinct
from most of the current works, the proposed framework does not
require any prior information in the formulation process, and pri-
vate data can be well protected using this distributed approach.
Numerical examples are included to validate the effectiveness of
the proposed algorithms.

Index Terms—Distributed algorithms, multiagent systems,
multiobjective optimization, resource allocation.

I. INTRODUCTION

DUE TO urgent needs in optimization of large-scale
networks and recent advances in control of multiagent

systems, distributed optimization problems have received con-
siderable research attention during the past decade [1]–[4].
Among these problems, optimal resource allocation is regarded
as one of the most important subjects due to its wide appli-
cations in many engineering fields, such as optimal power
resource management [5], wireless communication resource
allocation [6], and traffic-flow control problems [7].

Recently, studies on resource allocation mostly concentrate
on single-objective problems (see [8]–[10]). Noticeably, in
many applications, there inherently exist multiple conflict-
ing objectives. For instance, economic, environmental, and
technical objectives should be included simultaneously in a
resource allocation problem of power systems [11]. One of the
widely used methods for multiobjective optimization problems
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(MOPs) is the scalarization approach, for example, [12], which
converts multiple objectives to a single weighted sum, and then
solves it with traditional optimization methods. Although this
approach holds high computational efficiency and many well-
developed tools for single-objective optimization are available,
it requires some prior knowledge to choose the weighting fac-
tors. Currently, many other techniques, such as particle swarm
optimization [13] and evolutionary approaches [14]–[17] are
extensively studied. In [16] and [17], MOPs are decomposed
into a set of scalar subproblems. The algorithm in [16] uses
a constrained decomposition with grids to achieve both better
robustness to the shape of the Pareto front and high solu-
tion diversity. A constraint-based method is proposed in [17],
which selects one of the objectives as the main objective and
takes the others as constraints.

The aforementioned works are mainly based on central-
ized algorithms where all objective functions need to be
collected and combined in advance for centralized compu-
tation. A large amount of results in literature have been
contributed to multiobjective optimization algorithms in a cen-
tralized manner, but most of them are evolutionary algorithms,
as in [14], [15], and [18], by which only near-Pareto opti-
mum can be obtained with stochastic convergence properties.
In addition, evolutionary algorithms usually require significant
computation resources and massive data communication. Even
for single-objective optimization problems, the centralized
approaches have struggled with the computation and commu-
nication complexity. More recently, distributed methods are
widely considered as potential substitutes to the centralized
ones, since they have a number of superior advantages, such
as fast parallel computation, privacy protection, and robustness
to single endpoint failures [19]. Since adding more objec-
tives will dramatically compound the problems, and in many
real-world applications, the participants are usually not will-
ing to share their private information, for example, local cost
functions and preferences, the aforementioned benefits of dis-
tributed methods are of great importance to multiobjective
resource allocation problems (MRAPs).

In [20], a distributed algorithm is proposed using a weighted
sum approach to search the Pareto front of an MOP with-
out global constraints. One limitation of the study is that
the weighting parameters are chosen in advance as global
information, in which sense the algorithm is not fully dis-
tributed. The work [21] addresses MOPs with gradient noises
via diffusion strategies, where stochastic convergence to the
Pareto solution with bounded error is studied. Both [20]
and [21] consider the cases where each agent is only assigned
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with one single objective, and use the weighted sum approach
to integrate the objectives. The weighted Lp preference-based
method is investigated in [22], where comparisons among dif-
ferent settings of the value p are conducted in terms of the
robustness and selective pressure.

Algorithms without prior knowledge and high-level
decision-making processes are urgently needed for MRAPs to
achieve fully autonomous and mechanized operations. In addi-
tion, to facilitate the requirements of distributed multiagent
networks, the algorithms should be decentralized into a group
of segments with local communications. However, theoretical
progress on such problems is lagging far behind. There are a
series of challenges that impede the algorithm development.
First, selections of preference indices that suitably compromise
among the objectives are difficult [23]. Second, the design
of distributed algorithms for single-objective resource alloca-
tion problems remains a severe issue due to the complexity of
convergence analysis, and challenges in handling global con-
straints [8]. Especially, dealing with the combination of them is
nontrivial, because some difficulties will arise, such as adjust-
ing the preference index during optimization processes in a
distributed manner, and analyzing convergence properties of
the compound problems.

Motivated by the above observations, this article aims to
establish a framework for MRAPs and proposes distributed
algorithms to seek the most satisfactory Pareto solution.
The problems under consideration are of fundamental differ-
ences with respect to the state-of-the-art works [16], [17] as
discussed above. By allocating each subagent a local decision
maker, we decentralize the problem into a group of subagents
communicating over a network. In particular, a weighted Lp

preference index is introduced to quantify the Pareto solu-
tions, where two unknown parameters need to be acquired
as the optimization proceeds. Such an Lp preference index
proves to be effective in producing robust Pareto optimum
for practical applications, as the resulting solution is close to
the ideal vector. In order to formulate the preference index,
we exploit two fixed-time optimization algorithms in a dis-
tributed manner, by which the agents can quickly obtain their
local preference indices within a fixed time. The convergence
of those algorithms is established by exploring the graph
properties and fixed-time control techniques. Although deci-
sion makers are involved, their preference indices are learned
from the optimization process utilizing auxiliary dynamics
without prior information. Due to the basic requirement of
eliminating global information in distributed algorithms, the
weighting vector for each type of objective is also assumed
to be unknown, that is, the network objectives can be any
combination of the distributed local ones. This is different
from the single-objective optimization problems in [2], [3],
and [8] that assume the network objective is the summation
of all local objectives. With some commonly used assump-
tions, it is proved that the proposed framework admits a
unique Pareto solution such that the preference metrics of the
group are minimized. Then, distributed algorithms for con-
strained optimization problems are proposed to search for the
optimal decisions, and deterministic convergence is established
via applying the Lyapunov theory, consensus techniques, and

convex analysis. To date, none of the existing works deal
with the problem where each local agent maintains multiple
conflicting objectives for large-scale distributed multiagent
systems. The significance of our research is to provide a
new solution for distributed MRAPs that does not require
any weighting parameters. In particular, such distributed algo-
rithms can be implemented online using a set of low-price
processors with potentially less communication and com-
putation resources. Numerical simulations are performed to
validate the effectiveness of the proposed algorithms, where
comparisons with respect to the centralized methods and the
scalability studies are carried out.

The remainder of this article is organized as follows. Some
preliminaries on graph theory and formulation of MRAPs are
presented in Section II. Distributed algorithms and conver-
gence analysis are studied in Section III. Simulation examples
are included for illustration in Section IV. Section V concludes
this article.

Notations: Throughout this article, we denote R, R≥0,
R>0, R

n, and R
n×m as the sets of real numbers, non-

negative real numbers, positive real numbers, n-dimensional
real vectors, and real matrices of size n × m, respectively.
Let diag(d1, d2, . . . , dn) be a diagonal matrix with elements
(d1, d2, . . . , dn) on its main diagonal. For x ∈ R

n, the gradi-
ent of a differentiable function F(x) : R

n → R with respect
to xi is denoted by ∇iF(x), and the gradient with respect to x
is represented by ∇F(x) = [∇1F(x), . . . ,∇nF(x)]T .

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory

A graph is denoted by G(V, E), where V = {1, 2, . . . , N}
represents a set of N distinct vertices, denoting the partici-
pants in the network, and E = {(i, j) : i, j ∈ V} denotes the set
of edges, representing the communication channels among the
participants. If any edge pair (i, j) ∈ E implies (j, i) ∈ E , then
the graph is said to be undirected. The elements of the adja-
cency matrix, denoted as A, are defined as aij = 1 if the edge
pair (j, i) ∈ E , and zero otherwise. We define the neighboring
set of the ith agent as Ni = {j ∈ V : (j, i) ∈ E}, by which
the degree matrix is defined as D = diag(d1, d2, . . . , dn),

where di = ∑N
j=1 aij ∀i ∈ V . The Laplacian matrix is given by

L = D −A. A graph G(V, E) is said to be connected if there
exists a path from one vertex to any others. For an undirected
and connected graph, 0 is a simple eigenvalue of the Laplacian
matrix L, and all other eigenvalues are positive [24].

B. Preliminary Lemmas

Lemma 1 [25]: Let xi ≥ 0 for all i = 1, . . . , L. If 0 < p ≤ 1,
then

L∑

i=1

xp
i ≥

(
L∑

i=1

xi

)p

. (1)

If p > 1

L∑

i=1

xp
i ≥ L1−p

(
L∑

i=1

xi

)p

. (2)
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Fig. 1. Network structure of a resource allocation problem. Each node
denotes a distributed agent, where different colors represent that the cost func-
tions or preferences of the participants are different, and the line segments
denote the communication network.

Lemma 2 [26]: Consider a continuous and radially
unbounded function V(x(t)) : R

m → R≥0, satisfying

V̇(x(t)) ≤ −[αVμ(x(t)) + βVν(x(t))
]ρ (3)

where α, β, ρ, μ, ν ∈ R>0 with ρμ < 1 and ρν > 1. Then,
the origin is a fixed-time stable equilibrium, and the upper
bound of the settling time is given by

T = 1

αρ(1 − ρμ)
+ 1

βρ(ρν − 1)
. (4)

C. Problem Formulation

Consider a group of N agents that cooperatively optimize
some objective functions, where the ith agent maintains a set
of K conflicting or partially conflicting objectives

Ci(xi) =
{

C1
i (xi), C2

i (xi), . . . , CK
i (xi)

}
(5)

where Ck
i (xi) : R → R denotes the kth objective of agent i,

and is privately known to agent i only. The network resource
constraint is given by

N∑

i=1

xi =
N∑

i=1

di. (6)

For a nonconflicting multiobjective problem, a simple solu-
tion that simultaneously optimizes all objectives can be
obtained, and it can therefore be converted to single-objective
optimization problems. To avoid this trivial case, the objec-
tives are assumed to be at least partially conflicting, which
means a compromised solution preferred by the decision mak-
ers should be derived. Fig. 1 illustrates a network structure of
MRAPs, where each node represents a participant that pos-
sesses multiple conflicting objectives, and the line segments
denote the communication channels among the participants.
Under distributed settings, it is assumed that agent i can only
communicate with its adjacent neighbors Ni (encircled by
the dotted line) to share some nonconfidential information.
Moreover, all participants are subject to the network resource
constraint in (6).

The following assumptions are made on the local objective
functions and the communication topology.

Assumption 1: Each local objective function Ck
i is twice

differentiable, and mk
i -strongly convex with mk

i > 0, that is,
there exists a positive mk

i such that

(
∇Ck

i (xi) − ∇Ck
i

(
x′

i

))T(
xi − x′

i

)

≥ mk
i

∥
∥xi − x′

i

∥
∥2 ∀xi, x′

i ∈ R.

Assumption 2: The communication network is represented
by an undirected and connected graph.

To facilitate the ensuing analysis, let the objectives of
the network be C = {C1(x), . . . , C

K(x)}, where x =
[x1, . . . , xN]T ∈ R

N , and C
k(x) = ∑N

i=1 � k
i Ck

i is the kth objec-
tive of the network, with � k = [� k

1 , . . . ,� k
N]T ∈ R

N
>0 being

some weighting vector relying on the preference metrics.
Remark 1: Such a weighting vector � k always exists,

due to the convexity of the problem [27]. The relationship
between local objectives and the network objective is usu-
ally considered as

∑N
i=1 Ci(xi) in single-objective optimization

problems [3], [8], while in this article, the weight � k is
determined by the decision makers and is assumed to be
unknown. Here, introducing the weighting vector is for ana-
lytical purposes only, which is not required in the proposed
algorithms.

Pareto optimality is a widely used concept for MOPs. Now,
we give the formal definition as follows.

Definition 1 (Pareto Optimality [23]): A decision vector
x∗ ∈ R

N is a Pareto optimum of the MRAP if there does
not exist any other decision vector x ∈ R

N satisfying the con-
straint (6) such that C

k(x) ≤ C
k(x∗), for all k = 1, . . . , K with

C
j(x) < C

j(x∗) for at least one index j.
In this article, the global decision-making preference index

is given by

U
(
x, x̂∗, ω∗) =

N∑

i=1

[
K∑

k=1

ωk∗
i

(
Ck

i (xi) − Ck
i

(
x̂∗

i

))p
] 1

p

1 ≤ p < ∞ (7)

where C1
i (x̂

1∗
i ), C2

i (x̂
2∗
i ), . . . , CK

i (x̂K∗
i ) denote the ideal points

of each objective of the ith agent; x̂∗ = col(x̂∗
1, . . . , x̂∗

N) ∈ R
KN

is the ideal decision variable of the network, with x̂∗
i =

[x̂1∗
i , . . . , x̂K∗

i ]T ∈ R
K being the ideal decision variable of

agent i; ω∗ = col(ω∗
1, . . . , ω∗

N) ∈ R
KN are positive weight-

ings of the objectives specified by the local decision makers,
with

∑K
k=1 ωk∗

i = 1 for all i ∈ V . As in [23], the weight ωk∗
i

is chosen according to the relative importance of objective Ck
i

compared with the total objective value Ci

ωk∗
i =

∣
∣Ck

i

(
x̄k∗

i

)∣
∣

∑K
j=1

∣
∣
∣C

j
i

(
x̄j∗

i

)∣
∣
∣

(8)

where x̄k∗
i denotes the optimizer for the summation of each

type objective function subject to the resource constraint, that
is, for all k = 1, . . . , K and i ∈ V

x̄k∗
i = argmin

x̄k
i ∈R

N∑

i=1

Ck
i

(
x̄k

i

)
, subject to (6). (9)
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Remark 2: This class of preference index in (7) is called the
weighted Lp metrics that have been commonly used to generate
Pareto-optimal solutions in a lot of literature, for instance, [28]
and [29]. It is worth noting that the preference index (7) con-
tains two unknown parameters ωk∗

i and Ck
i (x̂

∗
i ), which will be

learned from the optimization process. In some existing works,
for example, [20] and [27], the weight of each objective is
selected randomly or chosen by a global agent with some prior
information. However, prior knowledge and global information
are usually not available for distributed optimization problems.

Remark 3: The problem (9) is a distributed form of single-
objective optimization. This article utilizes such a formulation
to derive one of the parameters for the preferences. From the
practical point of view, it has been observed that such weight-
ings in (8) prove to be effective for many applications [30],
which will also be demonstrated by the simulation examples in
Section IV. Mathematically, the Pareto solution obtained from
weighted Lp metrics is robust to modeling uncertainties since
it is unlikely to provide those solutions that are too far from
the ideal points [28]. Nevertheless, this approach poses a sig-
nificant challenge for distributed methods, because it requires
that all agents cooperatively find the cost of each type of objec-
tive, that is, the summation of the kth objective subject to the
global constraint as in (9). To handle such a difficulty, we pro-
pose fixed-time algorithms to solve the distributed-constrained
problem in Section III.

Conventionally, this MRAP can be solved via centralized
approaches, such as multiobjective evolutionary algorithms,
genetic algorithms, and particle swarm optimization [14].
For those centralized methods, all information of subsystems,
including real-time data and objective functions, should be col-
lected to a central unit (with data collection, calculation, and
decision-making processors), where communication require-
ments are highly demanding, and private information may not
be well protected. In addition, some of those methods are com-
putationally expensive, and difficult to code. Consequently,
centralized methods are not feasible for large-scale MRAPs.

To eliminate the aforementioned disadvantages of central-
ized approaches, this article proposes distributed algorithms,
by which the complex MRAP can be solved using a group of
low-price processors with local communications. It is assumed
that there is a local decision maker in each agent that makes
compromises among the objectives. The centralized decision-
making criteria (7) are allocated to a group of distributed
decision makers, where the preference index of the ith agent
is given by

ui
(
xi, x̂∗

i , ω
∗
i

) =
[

K∑

k=1

ωk∗
i

(
Ck

i (xi) − Ck
i

(
x̂∗

i

))p
] 1

p

1 ≤ p < ∞. (10)

It is important that the agents are entitled to formulate its
decision criterion since there is no central authority allowed
to collect the private information.

To this end, the MRAP can be formulated as

min
xi∈R

{
C1

i (xi), . . . , CK
i (xi)

}
, for all i ∈ V (11a)

Fig. 2. Flowchart of multiobjective optimization for distributed agents.
Each agent has its own preference used to compromise the local cost func-
tions, and communicates with its adjacent neighbors to cooperatively optimize
the network objectives.

subject to
N∑

i=1

xi =
N∑

i=1

di (11b)

such that (10) is minimized. (11c)

Remark 4: Different from most of the recent research
on multiobjective optimization that searches exhaustively
for the complete Pareto set (usually referred to as vector
optimization), this article considers the classic preference-
based methods using a distributed approach, which gener-
ates only one most satisfactory solution depending on the
group’s preferences. This class of preference-based methods is
regarded as one of the most efficient approaches to deal with
MOPs, and many studies have been devoted to the research
area, for instance, [20]–[23] and [28]. Discussions and com-
parisons of the merits and demerits of the two classes of
approaches have been well documented in [23] and [27].

Remark 5: The reformulated problem in (11) using the dis-
tributed preference index (10) is equivalent to the centralized
one in (7) if the consensus of the Lagrangian multiplies is
achieved. Detailed analysis has been well established in many
existing works, for example, [5] and [9].

Fig. 2 displays a flowchart of distributed multiobjective
optimization algorithms. For the local controller within the
ith agent, it initializes the system configurations and inputs
some local information, including objective functions, initial
decision preferences, and states. Then, agent i compromises
among its local objectives according to its decision maker. By
communicating with adjacent neighbors, all agents will con-
verge to the Pareto-optimal solution that satisfies the global
constraint and mostly fits to the preferences specified by
the decision-making group. It should be emphasized that
the decision makers will amend their preferences during the
optimization process.
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Fig. 3. Interpretation of unique Pareto optimum satisfying preference indices
of decision makers. The preference indices are centered at the ideal point with
Lp-norm distance.

III. DISTRIBUTED ALGORITHMS AND

CONVERGENCE ANALYSIS

Before presenting the distributed algorithms, let us study
some properties of problem (11).

Definition 2 (�≥-Convex Set): A set S ⊂ R
K is defined as

�≥-convex if and only if S + �≥ = {s + d|s ∈ S, d ∈ R
K≥0}

is a convex set, with �≥ = {d ∈ R
K≥0} being the non-negative

convex cone.
Lemma 3: Under Assumption 1, the set of the objective

values of problem (11) is �≥-convex. Moreover, the proposed
optimization problem admits a unique solution.

Proof: Notice that all of the objectives, Cj
i ∀i ∈ V, j =

1, . . . , K are convex subject to a linear constraint. Thus, the
MRAP is convex. Consider f1 = C(x1)+ d1 and f2 = C(x2)+
d2, with x1, x2 ∈ R

N and d1, d2 ∈ �≥. Then, for any ε ∈ [0, 1]

εf1 + (1 − ε)f2 = εC(x1) + (1 − ε)C(x2) + εd1 + (1 − ε)d2

≥ C(εx1 + (1 − ε)x2) + εd1 + (1 − ε)d2

∈ C + �≥

where the inequality follows from the convexity of C. Hence,
the value set of the constrained problem (11) is �≥-convex,
which implies the Pareto front of the solution set is convex.
As a result, for any 1 ≤ p < ∞ in (10), the solution of the
MRAP (11) is unique (see [28]).

To demonstrate the fundamental principle behind, an exam-
ple with two objective functions is depicted in Fig. 3. For
convex functions, from Lemma 3, the objective values consti-
tute a �≥-convex set, with a convex Pareto front. By utilizing
Lp metrics for 1 ≤ p < ∞, there exists and only exists one
unique solution satisfying the decision makers’ preferences.
Furthermore, it is evident that the solutions derived from Lp

metrics are usually close to the ideal point, as shown in Fig. 3,
and therefore those solutions are robust to the model and
parameter uncertainties in many engineering systems.

Remark 6: With Assumption 1, the Pareto front of
problem (11) is guaranteed to be convex, which consequently
ensures that all the Pareto solutions can be derived by varying
the weighting parameters. This is crucial for the following
algorithm design and convergence analysis. For nonconvex
problems, some Pareto solutions may not be obtained by the
weighted-preference-based approaches [28].

Next, we present the proposed algorithms. For each agent
i, the constrained single-objective optimizer x̄k

i and optimal
weight ωk

i are derived by

ẏk
i = −α

⎡

⎣
N∑

j=1

aij

(
∇Ck

j

(
x̄k

j

)
− ∇Ck

i

(
x̄k

i

))
⎤

⎦

m
n

− β

⎡

⎣
N∑

j=1

aij

(
∇Ck

j

(
x̄k

j

)
− ∇Ck

i

(
x̄k

i

))
⎤

⎦

2− m
n

(12a)

x̄k
i =

N∑

j=1

aij

(
yk

j − yk
i

)
+ x̄k

i (0) (12b)

ωk
i = |Ck

i

(
x̄k

i

)|
∑K

j=1 |Cj
i

(
x̄j

i

)
|
. (12c)

The ideal point seeking algorithm is designed as

˙̂xi = −γ
[∇Ci

(
x̂i
)]m

n − δ
[∇Ci

(
x̂i
)]2− m

n . (13)

Then, the compromised solution for agent i can be obtained
from

ẋi = −∇ui
(
xi, x̂i, ωi

)− λi (14a)

λ̇i = −
N∑

j=1

aij
(
λi − λj

)−
N∑

j=1

aij
(
zi − zj

)+ (xi − di) (14b)

żi =
N∑

j=1

aij
(
λi − λj

)
. (14c)

In (12)–(14), α, β, γ , and δ are positive real numbers; m and n
are positive odd integers with m < n; and initial states satisfy∑N

i=1 x̄k
i (0) = ∑N

i=1 di.
Now, we show the convergence analysis of the proposed

algorithms (12)–(14). First, we prove that the weighting vec-
tors of the preference indices converge to (8) within a fixed
time.

Lemma 4: Under Assumptions 1 and 2, the proposed algo-
rithm in (12) solves the constrained optimization problem (9).
Moreover, the weighting parameters ω converge to ω∗ in a
fixed time, and the upper bound of settling time is given by

T1
max = 1

α2
3n+m

4n

(
1
2κ(λ2(L))2

)m+n
2n
(

1 − 3n+m
4n

)

+ 1

β2
5n−m

4n N
n−m
2n

(
1
2κ(λ2(L))2

) 3n−m
2n
(

5n−m
4n − 1

)

(15)

where κ = mini∈V,k∈{1,...,K} mk
i , and λ2(L) denotes the second

smallest eigenvalue of the Laplacian matrix.
Proof: Since the communication graph is undirected, we

have

N∑

i=1

x̄k
i =

N∑

i=1

N∑

j=1

aij

(
yk

j − yk
i

)
+

N∑

i=1

x̄k
i (0) =

N∑

i=1

di
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by which the equality constraint is guaranteed.
Therefore, (12a)–(12c) can be transferred to an unconstrained
optimization problem as

min
yk∈RN

Ck
(

yk
)

=
N∑

i=1

Ck
i

⎛

⎝
N∑

j=1

aij

(
yk

j − yk
i

)
+ x̄k

i (0)

⎞

⎠ (16)

where yk = [yk
1, . . . , yk

N]T . From (12b), we have

∂Ck
i

∂yk
j

= ∂Ck
i

∂ x̄k
i

∂ x̄k
i

∂yk
j

=
{−∑N

j=1 aij∇Ck
i

(
x̄k

i

)
, j = i

aij∇Ck
i

(
x̄k

i

)
, j = i

(17)

which implies

∇Ck
(

yk
)

= −L∇Ck
(

x̄k
)
. (18)

Due to strong convexity of all Ck
i ∀i ∈ V, k = 1, . . . , K, and

connectivity of the graph, it follows that (see [31]):

‖∇Ck
(

yk
)
‖2 ≥ 1

2
κ(λ2(L))2

[
Ck
(

yk
)

− Ck
(

yk∗)] (19)

where yk∗ = [yk∗
1 , . . . , yk∗

N ]T is the optimal solution of the
sum of the kth objective subject to the equality constraint.
Now, (12a) can be rewritten as

ẏk
i = −α

⎛

⎝
N∑

j=1,j=i

∂Ck
j

∂yk
i

+ ∂Ck
i

∂yk
i

⎞

⎠

m
n

− β

⎛

⎝
N∑

j=1,j=i

∂Ck
j

∂yk
i

+ ∂Ck
i

∂yk
i

⎞

⎠

2− m
n

(20)

and in a compact form as

ẏk = −α
[
∇Ck

(
yk
)]m

n − β
[
∇Ck

(
yk
)]2− m

n
. (21)

Consider a Lyapunov candidate given by

V1 = 1

2

[
Ck
(

yk
)

− Ck
(

yk∗)]2
(22)

of which the time derivative along (21) is obtained as

V̇1 =
[
Ck
(

yk
)

− Ck
(

yk∗)]∇TCk
(

yk
)

×
[

−α
[
∇Ck

(
yk
)]m

n − β
[
∇Ck

(
yk
)]2− m

n
]

(23)

=
[
Ck
(

yk
)

− Ck
(

yk∗)]

×
⎡

⎣−α

N∑

i=1

(
∂Ck

∂yk
i

)1+ m
n

− β

N∑

i=1

(
∂Ck

∂yk
i

)3− m
n
⎤

⎦. (24)

Applying Lemma 1, we have

V̇1 ≤ −α
[
Ck
(

yk
)

− Ck
(

yk∗)]
⎡

⎣
N∑

i=1

(
∂Ck

∂yk
i

)2
⎤

⎦

m+n
2n

− βN
n−m

2n

[
Ck
(

yk
)

− Ck
(

yk∗)]
⎡

⎣
N∑

i=1

(
∂Ck

∂yk
i

)2
⎤

⎦

3n−m
2n

.

(25)

Substituting (19) into (25), and from (22), we can obtain

V̇1 ≤ −α

(
1

2
κ(λ2(L))2

)m+n
2n
([

Ck
(

yk
)

− Ck
(

yk∗)]2
) 3n+m

4n

− βN
n−m

2n

(
1

2
κ(λ2(L))2

) 3n−m
2n

×
([

Ck
(

yk
)

− Ck
(

yk∗)]2
) 5n−m

4n

(26)

= −α2
3n+m

4n

(
1

2
κ(λ2(L))2

)m+n
2n

(V1)
3n+m

4n

− β2
5n−m

4n N
n−m

2n

(
1

2
κ(λ2(L))2

) 3n−m
2n

(V1)
5n−m

4n . (27)

With Lemma 2, it follows from (27) that yk → yk∗, x̄k → x̄k∗,
and ωi → ω∗

i in a fixed time bounded by T1
max as in (15).

The following results show the convergence of (13) to the
ideal point of each objective.

Lemma 5: With the algorithm in (13), x̂k
i for all i ∈ V, k =

1, . . . , K converge to the ideal decision x̂k∗
i of each objective

function Ck
i in a fixed time, bounded by

T2
max = 1

γ κ
m
n 2

m+n
2n
(
1 − m+n

2n

)

+ 1

δκ2− m
n 2

3n−m
2n K

n−m
2n

(
3n−m

2n − 1
) . (28)

Furthermore, x̂k
i (t) for all i ∈ V, k = 1, . . . , K are bounded.

Proof: Define a Lyapunov candidate for agent i as

V2 = 1

2

K∑

k=1

(
x̂k

i − x̂k∗
i

)2
(29)

of which the time derivative along (13) is given by

V̇2 =
K∑

k=1

(
x̂k

i − x̂k∗
i

) ˙̂xk
i

=
K∑

k=1

(
x̂k

i − x̂k∗
i

)[

−γ
[
∇Ck

i

(
x̂k

i

)]m
n − δ

[
∇Ck

i

(
x̂k

i

)]2− m
n
]

≤ −γ κ
m
n

K∑

k=1

(
x̂k

i − x̂k∗
i

)m+n
n − δκ2− m

n

K∑

k=1

(
x̂k

i − x̂k∗
i

) 3n−m
n

≤ −γ κ
m
n 2

m+n
2n V

m+n
2n

2 − δκ2− m
n 2

3n−m
2n K

n−m
2n V

3n−m
2n

2 . (30)

With Lemma 2, it is straightforward to obtain that x̂i converges
to the ideal decision variables x̂∗

i within a fixed time T2
max,

given by (28). Moreover, x̂k
i (t) is governed by the dynamics

in (13), with bounded ∇Ck
i . It converges to the finite ideal

point x̂k∗
i within t < T2

max and thus x̂k
i (t) is bounded for

t ≥ 0.
The following theorem reveals the overall convergence of

the proposed algorithms for the MRAP.
Theorem 1: Under Assumptions 1 and 2, the algo-

rithms (12)–(14) solve the MRAP (11).
Proof: From Lemmas 4 and 5, it follows that ∇ui(xi, x̂i, ωi)

is bounded. Therefore, xi, λi, and zi are all bounded. The rest
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of this proof is based on t ≥ max{T1
max, T2

max}, where x̄ =
x̄∗, ωi = ω∗

i , and x̂ = x̂∗ are used. Note that the solution of (11)
is unique as shown in Lemma 3. To ease convergence analysis,
the compact form of the distributed algorithm is written as

ẋ = −∇U
(
x, x̂∗, ω∗)− λ (31a)

λ̇ = −Lλ − Lz + x − d (31b)

ż = Lλ (31c)

where ∇U(x, x̂∗, ω∗) = [∇u1(x1, x̂∗
1, ω

∗
1), . . . ,∇uN(xN, x̂∗

N,

ω∗
N)]T ∈ R

N, λ = [λ1, . . . , λN]T ∈ R
N, z = [z1, . . . , zN]T ∈

R
N, and d = [d1, . . . dN]T ∈ R

N .

The equilibrium point of (31), (x∗, λ∗, z∗), can be obtained
from

0 = −∇U
(
x∗, x̂∗, ω∗)− λ∗ (32a)

0 = −Lλ∗ − Lz∗ + x∗ − d (32b)

0 = Lλ∗ (32c)

as

∇U
(
x∗, x̂∗, ω∗) = −λ∗ (33a)

Lz∗ = x∗ − d (33b)

Lλ∗ = 0. (33c)

A Lyapunov function is proposed as

V3 = 1

2
‖x − x∗‖2 + 1

2
‖λ − λ∗‖2 + 1

2
‖z − z∗‖2 (34)

and its time derivative is

V̇3 = (
x − x∗)T ẋ + (

λ − λ∗)T λ̇ + (
z − z∗)T ż

= (
x − x∗)T[−∇U

(
x, x̂∗, ω∗)− λ

]

+ (
λ − λ∗)T(−Lλ − Lz + x − d) + (

z − z∗)TLλ. (35)

Applying the results in (33)–(35) leads to

V̇3 = −(x − x∗)T[∇U
(
x, x̂∗, ω∗)− ∇U

(
x∗, x̂∗, ω∗)]

− (
x − x∗)T(λ − λ∗)

− (
λ − λ∗)TL(λ − λ∗)− (

λ − λ∗)L(z − z∗)

+ (
λ − λ∗)T(x − x∗)+ (

z − z∗)TL(λ − λ∗)

= −(x − x∗)T[∇U
(
x, x̂∗, ω∗)− ∇U

(
x∗, x̂∗, ω∗)]

− (
λ − λ∗)TL(λ − λ∗). (36)

Since the graph is connected, we have L is positive semidef-
inite, yielding

−(λ − λ∗)TL(λ − λ∗) ≤ 0.

Notice that

ūi

(
Ck

i (xi)
)

=
K∑

j=1

[
ωk

i

(
Ck

i (xi) − Ck
i

(
x̂∗

i

))p] 1
p ∀1 ≤ p < ∞

is a strictly convex and increasing function on Ck
i (xi) ≥

Ck
i (x̂

∗
i ). Also, all the objective functions Ck

i (xi) are strongly
convex on xi. Thus, U(x, x̂∗, ω∗) is strictly convex on x.
Consequently

−(x − x∗)T[∇U
(
x, x̂∗, ω∗)− ∇U

(
x∗, x̂∗, ω∗)] ≤ 0.

Algorithm 1: Distributed Algorithms for Agent i

Initialisation:
for i ∈ V , k = 1, . . . , K, set

yk
i = yi(0), x̄k

i = x̄k
i (0) = di, ωk

i = ωk
i (0),

x̂i = x̂i(0), xi = xi(0), λi = λi(0), zi = zi(0).
Preference formulation:

choose α, β, γ, δ > 0
select m, n to be positive odd integers with m < n
run the algorithms in (12)-(13).

Compromise:
each agent i communicates with its neighbors
j ∈ Ni to obtain the information λj and zj, and
implements the algorithm in (14).

End if convergence to Pareto solution is achieved.

Then, it is clear that V̇3 ≤ 0 and V̇3 = 0 if and only if the
equilibrium point is achieved. This completes the proof.

For real-time implementations, the overall structure of
the proposed algorithms for each agent is summarized in
Algorithm 1.

Remark 7: The proposed algorithms encompass fixed-time
processes in (12) and (13), converging to the optimal solution
of each type of objective summation

∑N
i=1 Ck

i (x̄
k∗
i ), and the

ideal point of every local objective Ci(x̂∗
i ), respectively. Then,

the weights ω∗
i and the reference points Ci(x̂∗

i ) are obtained
for the decision makers. Therefore, the decision makers can
learn from the optimization process in order to select a better
solution from the Pareto-optimal set. The rest of algorithms
in (14) employs gradient descent dynamics that compromise
among the objectives, and search for the decision vectors xi

mostly preferred by the decision makers. Similar algorithms
for single-objective optimizations are studied in some recent
works, e.g., [9], [31], and [32].

Remark 8: There is no global coordinator required in the
proposed algorithms. It can be understood in the way that all
local decision makers within the agents cooperatively optimize
the multiobjective functions subject to the global constraint
and specified preferences, by communication with their adja-
cent neighbors. The local information required for agent i
include the preference ui and cost functions Ci, which are
regarded as private information in this article. The shared
information from its neighbors are yj,∇Cj(x̄j), λj, and zj

for j ∈ Ni. Therefore, the proposed algorithms are fully
distributed.

Remark 9: In comparison to centralized methods, the dis-
tributed algorithms developed in this article can be employed
with limited processing power and communication resources.
From the algorithms in (12)–(14), it is clear that each agent
only needs to communicate with its adjacent neighbors and,
therefore, the communication complexity is independent of
the total number of agents in the network. Meanwhile, the
computation complexity is determined by the number of neigh-
boring agents, since it only processes information received
from the neighbors j ∈ Ni. Moreover, it has been proved
that the proposed algorithms converge to the unique Pareto
solution satisfying the decision makers’ preferences in a
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Fig. 4. Communication graph of the network with six agents.

deterministic sense. In Lemmas 4 and 5, fixed-time conver-
gences to the optimal preference indices are achieved, and
in Theorem 1, asymptotic convergence to the compromised
solution is established via Lyapunov theories.

IV. SIMULATION EXAMPLES

In this section, we apply the proposed algorithms to a group
of six agents for algorithm validation, and then 120 agents
for the scalability test, respectively. Weighted L2 preference
indices are used for the simulation, and the communication
network is assumed to be represented by a circle graph as
shown in Fig. 4 for the case with six agents, and a similar
structure is utilized for the 120 agents. The objectives of each
microgrid are formulated as

min
Pd,i∈R

{
Ceco,i

(
Pd,i

)
, Cenv,i

(
Pd,i

)
, Ctec,i

(
Pd,i

)}

subject to
N∑

i=1

Pd,i =
N∑

i=1

(1 + ηi)Pl,i (37)

where Ceco,i(Pd,i) = ad,iP2
d,i + bd,iPd,i + cd,i, Cenv,i(Pd,i) =

rt(afuel,iP2
d,i+bfuel,iPd,i+cfuel,i), and Ctec,i(Pd,i) = atec,i(Pd,i−

Popt,i)
2 denote the economic, environmental, and technical

objectives, respectively.

A. Algorithm Validation and Comparison With Centralized
Methods

The simulation parameters are displayed in Table I, taken
from the practical application in [33] with modifications, and
rt = 0.2. Simulation results of power outputs are shown in
Fig. 5(a), where the dotted lines represent the optimal solu-
tions. It can be observed that the compromised Pareto solution
is obtained very fast, which is due to the implementation
of the fixed-time algorithms. Fig. 5(b) demonstrates that the
power supply and demand are balanced, that is, the resource
constraints are satisfied in the optimal states. In the simula-
tion study, there is no central authority required to coordinate
the distributed subsystems. All the agents only need to com-
promise their local cost functions, and measure their own
resource. By exchanging some nonconfidential information,
including yi, λi, and zi, with their adjacent neighbors, all the

agents can cooperatively optimize the network objectives, and
meanwhile meet the global resource constraints. As shown in
Fig. 6, the weighting factors ω converge to some optimal val-
ues determined by the fixed-time algorithms, which are then
used to form the preferences of the agents.

For comparison purposes, we implement the centralized
primal–dual algorithms in [34] for the problem as well. Both
of the algorithms share a similar structure, but the centralized
method assumes that the Lagrangian multipliers are globally
available to all the agents in the network. In particular, all the
computational burdens are taken by one central unit to process
the data collected from the agents, which include the private
cost functions and preferences. Those are critical drawbacks
of the centralized algorithms. When the participants are dis-
tributed over a large network, the centralized approaches may
no longer be feasible due to communication and computa-
tion costs. Fig. 7(a) shows the optimal power outputs of the
agents, and Fig. 7(b) depicts the supply-demand profile, where
the constraints of network resource are satisfied. Comparing
the results obtained from the distributed and centralized algo-
rithms, it can be observed that both of them converge to the
same optimal solution, which convinces that the distributed
formulation is equivalent to the centralized one, as discussed in
Remark 5. The convergence speed of the distributed algorithms
is faster than the centralized ones, due to the implementation
of fixed-time algorithms used in the preference formulation.

B. Online Formulation of the Preferences

For different settings of cost functions and constraints,
the proposed algorithms are able to automatically adjust the
performance index such that they can be implemented in an
online manner. To show that we consider time-varying load
profiles as shown in Fig. 8 displaying the weekly energy
consumptions of a typical area in the U.K. (available at
https://data.gov.uk/dataset). In each 30-min period, all the
parameters in Table I are assumed to be randomly generated
with variations in the range of [−20%, 20%], and rt is ran-
domly selected from [0.15, 0.3]. Fig. 9(a) and (b) presents,
respectively, the power outputs and the supply demand pro-
files of the network. Fig. 10 illustrates the changes of the
weighting factors over one day. It is clear that each agent
amends its preference index to achieve better tradeoff accord-
ing to the importance of each objective. As the load varies,
the cost of the objective will change, and therefore the weights
are modified. This is an important property to achieve fully
autonomous operations for power output regulations. Note
that the communication and computation complexity of each
agent is independent of the size of the network, and therefore
the distributed algorithms can be implemented for large-scale
networks. In comparison, centralized methods are not feasi-
ble since the communication and computation burden will be
overwhelming as the number of participants increases.

C. Scalability Test

Distributed algorithms have attracted significant attention
from the researchers in recent years, mainly due to their great
scalability for large networks. In this section, the proposed
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TABLE I
PARAMETERS OF THE MICROGRIDS

Fig. 5. Simulation results using the distributed algorithms. (a) Power outputs
of the microgrids. (b) Supply and demand profiles.

Fig. 6. Weighting factors of the objectives using the distributed algorithms.

Fig. 7. Simulation results using the centralized algorithms. (a) Power outputs
of the microgrids. (b) Supply and demand profiles.

algorithms will be implemented for a network of 120 agents.
The parameters of the agents are randomly generated from
Table I within the range of ±30%, and the communication
topology is assumed to be a cycle. The optimal power outputs
are displayed in Fig. 11(a). The convergence speed reduces
slightly due to the increase of the network size, but it can
be adjusted by changing the gains in the algorithms (12)–(14)
if required. In Fig. 11(b), the optimal resource allocation is
achieved, where the power supply and demand are balanced.

Fig. 8. Weekly power consumptions with a resolution of 30 mins/period.

(a) (b)

Fig. 9. Simulation results using the distributed algorithms with online prefer-
ence formulation. (a) Power outputs of the microgrids. (b) Supply and demand
profiles.

Fig. 10. Weighting factors ω for online preference formulation.

As having been discussed in Remark 9, the computation
complexity of the algorithms is independent of the total num-
ber of participants in the network. Because each agent has
two adjacent neighbors in a cycle graph, the communication
requirement for each participant is the same as the previous
case in Section IV-A. This also means that the computation
complexity is limited to processing data from the agent itself
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Fig. 11. Simulation results using the distributed algorithms with 120 agents.
(a) Power outputs of the microgrids. (b) Supply and demand profiles.

and its two neighbors. Therefore, the proposed algorithms are
feasible to be deployed in large networks.

V. CONCLUSION

This article has considered distributed multiobjective
optimization for resource allocation problems over network
connected multiagent systems. A preference-based method has
been used to develop the most satisfactory Pareto solution,
where the weighted Lp metrics obtained by online calculation
are implemented to reach robust solutions. Indeed, through two
fixed-time optimization algorithms, ideal values and weight-
ing factors are obtained accordingly. The proposed algorithms
are fully distributed, which do not require the exchanging
of private information. More important, the distributed meth-
ods can be implemented for large-scale distributed multiagent
systems with potentially less communication and computation
requirements. It has been proved that, under any connected
graphs, the distributed algorithms converge to the Pareto solu-
tion in a deterministic manner. The simulation studies have
demonstrated the effectiveness of the proposed algorithms.
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