
The University of Manchester Research

Distributed Training for Multi-Layer Neural Networks by
Consensus
DOI:
10.1109/TNNLS.2019.2921926

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Liu, B., & Ding, Z. (2019). Distributed Training for Multi-Layer Neural Networks by Consensus. IEEE Transactions
on NEural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2019.2921926

Published in:
IEEE Transactions on NEural Networks and Learning Systems

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/10.1109/TNNLS.2019.2921926
https://www.research.manchester.ac.uk/portal/en/publications/distributed-training-for-multilayer-neural-networks-by-consensus(5afb1dba-2e2c-40e4-b9f2-dbc27d9c2589).html
https://doi.org/10.1109/TNNLS.2019.2921926

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Distributed Training for Multi-Layer Neural Networks by Consensus
Bo Liu , Zhengtao Ding , Senior Member, IEEE, and Chen Lv

Abstract— Over the past decade, there has been a growing interest
in large-scale and privacy-concerned machine learning, especially in the
situation where the data cannot be shared due to privacy protection or
cannot be centralized due to computational limitations. Parallel computa-
tion has been proposed to circumvent these limitations, usually based on
the master–slave and decentralized topologies, and the comparison study
shows that a decentralized graph could avoid the possible communication
jam on the central agent but incur extra communication cost. In this
brief, a consensus algorithm is designed to allow all agents over the
decentralized graph to converge to each other, and the distributed
neural networks with enough consensus steps could have nearly the same
performance as the centralized training model. Through the analysis of
convergence, it is proved that all agents over an undirected graph could
converge to the same optimal model even with only a single consensus
step, and this can significantly reduce the communication cost. Simulation
studies demonstrate that the proposed distributed training algorithm
for multi-layer neural networks without data exchange could exhibit
comparable or even better performance than the centralized training
model.

Index Terms— Backpropagation, consensus, distributed train-
ing, graph theory, Lyapunov.

I. INTRODUCTION

Supervised learning has been well developed with theoretical
analysis and widely used in varieties of applications [1], such as
image recognition [2], speech recognition [3], and text processing [4].
The primary task of supervised learning is to train a “black-box”
model from limited data samples, where the training process is
generally in a single machine. However, this centralized training
manner may not be suitable for those large-scale or privacy-concerned
problems, such as big data applications [5] and recommendation
systems [6], which could only be or better addressed in a distributed
manner [7], [8].

First, the entire data set is too large to be processed by a single
machine because of the hardware or software limitations. Second,
data samples are generated or collected by different machines, which
is intrinsically distributed, such as wireless sensor networks. Finally,
the data samples cannot be collected centrally in a single machine or
shared among different machines because of the privacy or sensitivity
issues, such as medical data and user habit analysis. Therefore,
the problem that we are, now, facing is that the model or decision is
better to be made based on all the data samples instead of training
with only local samples, while every agent cannot reveal its local data
to a central server or other agents. Different methods and algorithms
for distributed training are proposed to deal with this problem,
including distributed support vector machines (SVMs) [9], [10] and
distributed neural networks [11], [12].

Manuscript received September 19, 2018; revised February 22, 2019 and
June 3, 2019; accepted June 4, 2019. This work was supported by the
Science and Technology Facilities Council through Newton Fund under Grant
ST/N006852/1. (Corresponding author: Zhengtao Ding.)

B. Liu and Z. Ding are with the School of Electrical and Electronic
Engineering, The University of Manchester, Manchester M13 9PL, U.K.
(e-mail: bo.liu-2@manchester.ac.uk; zhengtao.ding@manchester.ac.uk).

C. Lv is with the School of Mechanical and Aerospace Engi-
neering, Nanyang Technological University, Singapore, 639798 (e-mail:
lyuchen@ntu.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2921926

Castillo et al. [13] and Kim et al. [14] proposed the distributed
training algorithm for SVMs, where the support vectors from the
local data set are exchanged with connected neighbors, which exhibits
a simple communication mechanism and fast convergence rate.
However, as the support vectors are exactly the useful data samples,
the sharing of which makes it unsuitable for privacy-concerned prob-
lems. Scardapane et al. developed the distributed learning algorithms
for random vector functional link networks [15] and echo state
networks [16], where the entire data set is distributed evenly on all
agents over a decentralized graph, and the consensus-based algorithm
is taken to compute the global average of the parameters over the
graph. Although simulations show great performance in effectiveness
and efficiency, these distributed models may not be capable of
dealing with complex problems, because they have a quite simple
structure and only train parameters of the output layer using the least
squares method. Yuan et al. [17] analyzed the convergence rate of
decentralized parallel stochastic gradient descent for convex functions
with bounded gradient, which shows a linear convergence rate.
Lian et al. [18] have proved that decentralized stochastic gradient
descent has a similar convergence rate as centralized stochastic gradi-
ent descent and can have a linear speedup with respect to the number
of agents, with Lipschitzian and bounded gradient. Georgopoulos and
Hasler [19] proposed a distributed algorithm for machine learning
in networks, where the entire data set is divided into arbitrarily
connected agents without a central agent, and a consensus method
is used to transform the centralized iterative learning algorithm to
a distributed manner. However, a large number of communications
are needed to reach consensus, which could be quite computationally
expensive.

This brief proposes a consensus-based distributed training method
for multi-layer neural networks, which requires only a single com-
munication among connected neighbors over a decentralized graph
topology after each training iteration. The convergence analysis shows
that the proposed distributed training algorithm for multi-layer neural
networks can converge to the optimal model in union, which is
verified by the simulation studies.

The remainder of this brief is organized as follows. Section II
compares the master–slave graph and the decentralized graphs for
parallel computation and introduces the consensus algorithm for dis-
tributed training. Section III analyzes the convergence of distributed
training for multi-layer neural networks over a decentralized graph
using the consensus algorithm. Section IV details the simulation
and numerical results on four University of California, Irvine (UCI)
data sets for binary classification, multi-labeled classification, and
regression, which verify the effectiveness of the proposed distributed
training algorithm. Section V concludes this brief.

II. PRELIMINARIES AND PROBLEM LAYOUT

A. Consensus Algorithm

Parallel computation is a leading method for distributed training to
solve large-scale and privacy-concerned machine learning problems,
such as deep learning [20], data mining with big data [21], and
inference on wireless sensor network [22]. Exiting parallel algo-
rithms are mostly designed for the master–slave graph, such as the
parameter server topology [23], where there is a master (or central)
agent connected with multiple slave agents, as shown in Fig. 1(a).

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Manchester. Downloaded on February 21,2020 at 14:49:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8695-7342
https://orcid.org/0000-0003-0690-7853

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. (a) Master–slave graph topology. (b) Decentralized graph topology.

The central agent receives information (weights or gradients for
neural networks) from all other slave agents and computes the sum
or average of them, which is then fed back to the slave agents as
the update of the model parameter. The potential bottleneck of this
master–slave graph topology is the possible communication traffic
jam on the central agent for the reason that all other agents need to
communicate with the central agent concurrently after each training
iteration [24]. This problem could be quite serious, especially when
the communication bandwidth is low or the latency is high. To avoid
the communication jam on the central agent, a decentralized topology,
as shown in Fig. 1(b), is proposed, where there is no central agent,
and all agents only need to communicate with its directly connected
neighbors.

The decentralized graph topology is assumed as an undirected
graph G = (V, E ,A), with V = {1, 2, . . . N}, E ⊂ V × V , and
A = [ai j] ∈ R

N×N representing the set of agents, the set of edges,
and the adjacency matrix, respectively. An edge (i, j) ∈ E represents
that the i th and j th agents can communicate with each other and
ai j = a j i = 1. The connectivity of the graph with N agents is
known in advance and can be formalized in the form of an N × N
weighted connectivity matrix W , where wi j > 0 if (i, j) ∈ E or
i = j ; otherwise, wi j = 0 [25]. More generally, the value of the
element wi j represents the strength of the connection between these
two corresponding agents, and wi j = 0 means that agent i and
agent j are disconnected.

In this brief, a fixed and undirected graph is concerned, and
the weighted connectivity matrix W of the graph should meet
the following requirements to make all the agents that achieve
consensus: 1) wi j ∈ [0, 1), ∀(i, j); 2) wi j = w j i , ∀(i, j); and
3)

∑N
j=1 wi j = 1, ∀i . We suppose that each agent k in the graph has

a parameter row vector denoted by θk , and the consensus algorithm
can allow all agents to converge to their average θ = (1/N)

∑N
k=1 θk

only with local communication by iteratively computing the mean
value of the directly connected neighbors. The update of an agent i
using the consensus algorithm is given by

θ ′
i =

N∑

j=1

wi j θ j (1)

where θ ′
i is the updated parameter of θi after a single consensus step.

The update of parameters of all the agents with a single consensus
step can then be written as

θ ′ = C(θ, W) = Wθ (2)

where the matrices θ and θ ′ are defined as the concatenation of
parameter vectors of all the agents before and after the consensus
process C, respectively, and the kth row of θ is θk . Regardless of the

initial status of each agent, this method would allow all the agents
to converge to their global average by repetitively computing (2).

Different consensus strategies generate different weighted
connectivity matrices W for a certain decentralized graph, which
may influence the convergence rate of the consensus algorithm.
Common consensus strategies include max-degree [26], Metropolis–
Hastings [27], and Laplacian method [28], among which the
Laplacian method is adopted in this brief for its simple form, and
tens of consensus steps are commonly required to achieve consensus.

B. Distributed Neural Network

In general, the training process of a neural network can be
described as two iterative steps. The empirical risk is computed at the
first step, which can be the mean squared error between the actual
output and the estimated output, and an update of the parameter θ is
subsequently conducted based on the empirical risk. In the centralized
learning case, the empirical risk is defined by

E(D, θ) = 1

n

n∑

i=1

Q(xi , yi , θ) (3)

Q(xi , yi , θ) = 1

2
(ŷi − yi)

2 (4)

ŷi = f (xi , θ) (5)

where E denotes the empirical risk over the entire training data set D
(n samples), Q is the loss function for a single data sample (xi , yi),
ŷi is the estimated value of yi , and f represents a mapping from xi
to yi with parameter θ .

The gradient of the empirical risk with respect to θ is given by

d(θ) = ∂

∂θ
E(D, θ) = 1

n

n∑

i=1

∂

∂θ
Q(xi , yi , θ) (6)

where d(θ) is the partial derivative of E over θ .
In the distributed training case, supposing that the entire data set

is divided into N sub-data sets and distributed on N agents (or
machines) with the same initialized neural networks, the parameters
(θ1, θ1 . . . θN) of all agents are averaged and then fed back to each
agent as the updated parameter after each training iteration. In the
master–slave graph, the central agent computes the mean value, while
the consensus algorithm with enough consensus steps is used in the
decentralized graph.

The distributed neural networks would give nearly the same result
as the centralized training neural network based on the entire data set
when the batch gradient descent is taken as the optimization method
for minimizing the empirical risk. For distributed training, the entire
empirical risk can be decomposed into local empirical risks

E(kD, θk) = 1

nk

nk∑

i=1

Q(k xi ,
k yi , θk) (7)

d(θk) = 1

nk

nk∑

i=1

∂

∂(θk)
Q(k xi ,

k yi , θk) (8)

where kD, nk , θk , and (k xi ,
k yi) represent the data set, the number of

data samples, the model parameter, and the data sample i on agent k,
respectively.

Substituting (7) and (8) into (3) and (6), respectively, the global
empirical risk and parameter can be obtained by averaging these

Authorized licensed use limited to: University of Manchester. Downloaded on February 21,2020 at 14:49:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

parameters over all agents, which leads to

E(D, θ) =
N∑

k=1

nk

n

1

nk
Q(k xi ,

k yi , θk)

=
N∑

k=1

nk

n
E(kD, θk) (9)

d(θ) =
N∑

k=1

nk

n

1

nk

∂

∂(θk)
Q(k xi ,

k yi , θk)

=
N∑

k=1

nk

n
d(θk). (10)

Equation (10) shows that the distributed neural networks can obtain
the same gradient vector d(θ) as the centralized case by computing
the average of gradient vectors d(θk) of all agents over the graph,
and this can be easily extended to stochastic gradient descent and
mini-batch stochastic gradient descent [18].

Therefore, the distributed neural networks in a decentralized topol-
ogy can be realized by substituting the local gradient with the average
of the gradients using the consensus algorithm with enough consensus
steps. The update procedures are as follows:

d(θ̂) = C(d(θ), W) (11)

θ ′′
k = θk − ηd(θ̂k) (12)

where d(θ) and d(θ̂) represent the concatenation of gradient vectors
of all agents over the graph before and after the consensus process C,
and the kth row of d(θ) is d(θk). θ ′′

k is the updated parameter of θk
after the training process, and d(θ̂k) and η denote the gradient of
agent k and the learning rate, respectively.

It is noteworthy that the order of (11) and (12) can be exchanged,
which will not affect the theoretical analysis and can remove the
requirement that all agents should have the same initialized parame-
ters. That is, the local parameters θk are first updated with the local
gradient vector d(k θ̂), and then, the average of the parameters of all
the agents is obtained using the consensus algorithm; the processes
of which are as follows:

θ ′
k = θk − ηd(θk) (13)

θ ′′ = C(θ ′, W) (14)

where θk and θ ′
k represent the parameter of agent k before and after

the training process, respectively. The matrices θ ′ and θ ′′ are defined
as the concatenation of parameter vectors of all agents before and
after the consensus process, respectively. It is notable that repetitive
computing similar to (2) is required for (11) and (14) to reach their
mean value.

Based on the above-mentioned analysis, we find that the distributed
neural networks over a fixed and undirected graph using the consen-
sus algorithm with enough consensus steps could exhibit nearly the
same result as the centralized training model based on the entire data
set. However, the main drawback of this method is that repetitive
computing is required to reach the approximate average after each
training iteration, and this computation cost could be multiple times
than training with the master–slave topology.

To tackle this problem, we propose the distributed training algo-
rithm for multi-layer neural networks with only a single consensus
step after each training iteration, which would significantly decrease
the computation cost for consensus. And the proof, as well as
simulation, will be given in Section III to verify that the distributed
neural networks over an undirected graph allow all agents to converge
to the globally optimal model.

III. CONVERGENCE ANALYSIS

We will prove that the proposed distributed training methods with
only a single consensus step after each training iteration would allow
all the neural networks over an undirected graph to converge to the
same optimal neural network model. To illustrate this point, we ana-
lyze the distributed neural networks from the perspectives of the
decrease of empirical risks and the convergence of model parameters
using two different methods as presented in Sections III-A and III-B,
respectively.

The over-parameterized neural networks with enough hidden layer
nodes are considered in this brief, which has a linear conver-
gence rate to the optimal solution based on the gradient descent
method [29]–[31].

Assumption 1: The model parameter gradually approaches to the
optimal solution with the increase of training steps, that is

‖θi (t + 1) − θ∗‖ ≤ ‖θi (t) − θ∗‖, i = (1, 2, . . . , N) (15)

where θ∗ and θi (t) denote the optimal model parameter and the model
parameter of agent i at iteration t , respectively.

A. Analysis on Empirical Risk

Assumption 2: Empirical risk E(θ) is a quasi-convex function of θ ,
which satisfies E(θi) ≤ E(θ j) if ‖θi − θ∗‖ ≤ ‖θ j − θ∗‖.

The parameter matrix θ ′ = (θ ′
1, θ

′
2, . . . θ ′

N) is defined as the
updated parameter matrix θ = (θ1, θ2, . . . θN) after the training
process T , which satisfies ‖θ ′

i − θ∗‖ ≤ ‖θi − θ∗‖ based on
Assumption 1 and, thus, E(θ ′

i) = E(T (θi)) ≤ E(θi) based on
Assumption 2. E(θi) and E(θ ′

i) could be aliased as Ei and E ′
i ,

respectively.
The consensus process C with a single step for the parameter

matrix θ ′ = (θ ′
1, θ ′

2, . . . θ ′
N) of the empirical risk vector F ′ =

(E ′
1, E ′

2, . . . E ′
N) over the weight matrix W can be given as

E(θ ′′
i) = E

⎛

⎝
N∑

j=1

wi j θ
′
j

⎞

⎠ , i = (1, 2, . . . , N) (16)

where E(θ ′′
i) denotes the updated E(θ ′

i) value after a single consensus
step, which could be aliased as E ′′

i .
Proposition 1: Given that all the entries of the connectivity

weighted matrix wi j ∈ [0, 1) and
∑N

j=1 wi j = 1, it can be obtained
that

∥
∥
(
E ′′

1 , E ′′
2 , . . . E ′′

N
)∥
∥∞ ≤ ∥

∥
(
E ′

1, E ′
2, . . . E ′

N
)∥
∥∞ (17)

where ‖·‖∞ represents the max-norm of a vector, and the “=” holds
only when all the E ′

k values are equal.
Proof:

∥
∥
(
E ′′

1 , E ′′
2 , . . . E ′′

N
)∥
∥∞ = max

k

∥
∥E ′′

k

∥
∥

= max
k

∥
∥
∥
∥
∥
∥

E

⎛

⎝
N∑

j=1

wkj θ
′
j

⎞

⎠

∥
∥
∥
∥
∥
∥

≤ max
k

∥
∥E

(
θ ′

k
)∥
∥

= ∥
∥
(
E ′

1, E ′
2, . . . E ′

N
)∥
∥∞. (18)

The update of θ with the combination of local training process T
and global consensus process C with a single step can then be given
by

θ ′′ = C
([

θ ′
1, θ ′

2, . . . θ ′
N

]
, W

)

= C([T (θ1),T (θ2), . . .T (θN)], W). (19)

Authorized licensed use limited to: University of Manchester. Downloaded on February 21,2020 at 14:49:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Theorem 1: Each empirical risk Ek will converge to the min-
imal empirical risk E∗ in spite of their initial statuses, under
Assumptions 1 and 2.

Proof: R(F) is defined as the maximum gap between empirical
risks F = (E1, E2, . . . EN) and the optimal E∗, which can be
given by

R(F) = max
k

(‖Ek‖ − ‖E∗‖)
= ‖(E1, E2, . . . EN)‖∞ − ‖E∗‖ (20)

where it always holds that ‖E∗‖ ≤ ‖Ek‖.
By Proposition 1 and (20)

R(F ′′) = max
k

(∥
∥E ′′

k

∥
∥ − ∥

∥E∗∥∥)

= ∥
∥
(
E ′′

1 , E ′′
2 , . . . E ′′

N
)∥
∥∞ − ‖E∗‖

≤ ∥
∥
(
E ′

1, E ′
2, . . . E ′

N
)∥
∥∞ − ‖E∗‖

= R(F ′). (21)

Under Assumption 1

R(F ′) = max
k

(∥
∥E ′

k

∥
∥ − ‖E∗‖)

≤ ‖Ek‖ − ‖E∗‖
≤ ‖(E1, E2, . . . EN)‖∞ − ‖E∗‖
= R(F). (22)

Therefore, we can get

R(F ′′) ≤ R(F ′) ≤ R(F). (23)

Equation (23) shows that the maximum gap R(F) has a downward
trend, with an increase of training process combined with the consen-
sus process, which means that the empirical risks (E1, E2, . . . EN)
of all the agents over the graph would gradually converge to the
optimal E∗. This completes the proof. �

Remark 1: Assumption 1 describes a general idea of the training
process for an over-parameterized neural network; that is, a better
model should be obtained after a single training step. In the case that
the empirical risk decreases after several training steps, we can take
the several consensus steps during these training steps as a whole
consensus process, which will not affect Proposition 1, and the proof
still holds.

Remark 2: The convexity of empirical risk function is often used
to prove the convergence of neural networks [32]–[34]. Assumption
2 ensures that the upper bound of the empirical risks of all the
agents would decrease after a consensus step, which may also apply
to non-convex optimization problems, as long as all the agents are
restricted in the same basin of attraction. We will verify it in the
simulation experiments.

B. Analysis on Model Parameter

This section analyzes the proposed distributed training algorithm
using the Lyapunov method from the perspective of the convergence
of model parameters of all the agents.

We define �θi (t) = θi (t) − θ∗, i = (1, 2, . . . , N), as the gap
between θi (t) and θ∗, which would exhibit a downward trend under
Assumption 1, that is

‖�θi (t + 1)‖ ≤ ‖�θi (t)‖, i = (1, 2, . . . , N). (24)

Assumption 3: The parameter gap matrix of all agents satisfies (25),
with A being neutrally stable [35]

�θ(t + 1) = A�θ(t), λmax(A) ≤ 1 (25)

where the matrix �θ(t) is defined as the concatenation of parameter
gap vectors of all agents and the i th row of the matrix �θ(t)
represents �θi (t), and λmax(A) is the maximum eigenvalue of A.

Remark 3: Neutrally, stability only requires that the gap between
the model parameter and the optimal parameter keeps decreasing as
the training moving on, which is an extension of Assumption 1.

Theorem 2: The parameters θi (i = 1, 2 . . . N) of all neural
networks over a fixed and undirected graph would converge to an
identical optimal parameter close to θ∗ using the proposed distributed
training method under Assumption 3.

Proof: With the combination of the local training process and the
global consensus process, the update of agent i can be decomposed
into two procedures

θi (t + 1/2) = θ∗ + �θi (t + 1) (26)

θi (t + 1) = Bθi (t + 1/2) + Cui (t + 1) (27)

where (26) and (27) describe the local training and the global
consensus process, with θi (t + 1/2) and θi (t + 1) being the updated
parameters of agent i by this two processes, respectively. For the
neural network training problems, both B and C are the identity
matrices In , with n being the number of parameters of θi .

Over the fixed and undirected graph, the global consensus update
process is taken as an input ui (t + 1) of the local training updated
parameter θi (t + 1/2) for each agent i , which is described as

ui (t + 1) = K
N∑

j=1

ai j (θi (t + 1/2) − θ j (t + 1/2)) (28)

where ai j is the entries of the adjacency matrix A of the graph and
K is the control parameter.

A normalized adjacent matrix A′ and a normalized Laplacian
matrix can be obtained by

A′ = 1

dmax
A (29)

L̃ = IN − A′ (30)

where dmax is the maximum degree of the graph and IN is an identity
matrix, with N representing the number of agents in the graph. L̃ is
the normalized Laplacian matrix, which is a diagonal matrix, as a
fixed and undirected graph is concerned in this brief.

By substituting (28) and (30) into (26), we have

θ(t + 1) = (IN ⊗ In + L̃ ⊗ In K)θ(t + 1/2)

= (IN ⊗ In + L̃ ⊗ In K)(θ∗ + �θ(t + 1))

= (IN ⊗ In + L̃ ⊗ In K)(θ∗ + A�θ(t))

= IN ⊗ θ∗ + (IN ⊗ In + L̃ ⊗ In K)A�θ(t). (31)

Given that θ∗ is constant, we can define a new state function as

�θ(t + 1) = (IN ⊗ In + L̃ ⊗ In K)A�θ(t)

= (IN ⊗ A + L̃ ⊗ AK)�θ(t). (32)

The left and right eigenvalues corresponding to eigenvalue 0 of
the normalized Laplacian matrix L̃ are r T and 1, respectively, which
satisfies r T 1 = 1. We can then perform state transform on (32) by
ξ(t) = (M ⊗ In)�θ(t), where M = (IN − 1r T) and the i th row of
ξ(t) represents the error between each agent �θi and the mean of
all the agents [(1/N)

∑N
i=1 �θi].

Given that �θ(t) = ξ(t) + 1r T ⊗ In�θ(t) and r T L̃ = 0, we can
get

ξ(t + 1) = (M ⊗ In)�θ(t + 1)

= ((IN − 1r T) ⊗ In)(IN ⊗ A + L̃ ⊗ AK)�θ(t)

= (IN ⊗ A + L̃ ⊗ AK)ξ(t). (33)

Authorized licensed use limited to: University of Manchester. Downloaded on February 21,2020 at 14:49:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Then, a transform matrix T can be found to satisfy that
T −1L̃T = �, where � is the diagonal form of L̃, the first column
of T is 1, and the first row of T −1 is r . Let η = (T −1 ⊗ In)ξ ,
and (33) can be converted to

η(t + 1) = (IN ⊗ A + � ⊗ AK)η(t). (34)

And then

ηi (t + 1) = (IN ⊗ A + λi AK)ηi (t) (35)

where λi denotes the i th eigenvalue of the diagonal matrix �, which
is exactly the i th diagonal element of �. ηi (t) is the i th row of
matrix η(t).

Given that λ1(L̃) = 0 and A is neutrally stable, we, thus, have
η1(t + 1) = Aη1(t) → 0.

To design K , we set the Lyapunov function V (k) as

V (k) = η(t)T (IN ⊗ P)η(t) (36)

where P is a positive definite matrix.
For i = 2, 3 . . . N , it can be verified that

Vi (t + 1) − Vi (t)

= ηi (t)
T (A + λi AK)T P(A + λi AK)ηi (t) − ηi (t)

T Pηi (t)

= ηi (t)
T [(A + λi AK)T P(A + λi AK) − P]ηi (t). (37)

Setting K = −(AT P A + I)−1 AT P A, then

(A + λi AK)T P(A + λi AK) − P

= AT P A − 2λi AT P A(AT P A + I)−1 AT P A − P

+ (λi)
2 AT P A(AT P A + I)−1M1

= AT P A + [−2λi + (λi)
2]AT P A(AT P A + I)−1 AT P A

+ (λi)
2 AT P A(AT P A + I)−1M2 AT P A − P

= AT P A + [−2λi + (λi)
2]AT P A(AT P A + I)−1 AT P A

− (λi)
2 AT P A(AT P A + I)−2 AT P A − P

≤ AT P A + [−2λi + (λi)
2]AT P A(AT P A + I)−1 AT P A − P

(38)

where M1 = AT P A(AT P A + I)−1 AT P A and M2 = [−In +
AT P A(AT P A + I)−1].

Lemma 1: By Gersgorin circle criterion [36], the range of λ(L̃)
should be restricted in a disk, that is

|(λ − aii)| ≤
n∑

j=1, j �=i

|(ai j)|. (39)

It can be deduced from (30) that the entries of the normalized
Laplacian L̃i j ∈ [0, 1), all the eigenvalues of the normalized
Laplacian L̃, should, therefore, locate within a disk centered at 1 with
a radius of 1, that is, λ(L̃) ∈ (0, 2), and then [−2λi + (λi)

2] < 0.
Therefore, with the condition that A is neutrally stable, we can get

Vi (t + 1) − Vi (t)

= ηi (t)
T (A + λi AK)T P(A + λi AK)ηi (t) − ηi (t)

T Pηi (t)

= ηi (t)
T [AT P A + [−2λi + (λi)

2]M1 − P]ηi (t)

< 0. (40)

The matrix P should satisfy the following modified algebraic
Riccati equation (MARE) [36]:

P = AT P A − (1 − δ2)AT P A(AT P A + I)−1 AT P A + Q (41)

where Q is a positive definite matrix, and 0 < δ < 1.
Therefore, we can conclude that �θ(t) will gradually converge

to zero as the increase of iteration t using the proposed distributed

training method, and all agents would converge to a unique model
with their parameters θi (i = 1, 2..N) converging to the optimal
parameter θ∗. This completes the proof. �

Remark 4: The normalized Laplacian matrix L̃ is a symmetric
matrix and can be transferred to the diagonal form � because a
fixed and undirected graph is concerned in this brief. However, in the
case of the directed graph, such that the normalized Laplacian matrix
L̃ cannot be transferred to the diagonal form �, we can obtain its
Jordan form, which will still make the above-mentioned convergence
analysis hold [37].

Remark 5: Under Assumption 3, A is a constant matrix. However,
the matrix A is more likely to be varying with iterations in real
simulation and application. In this case, the above-mentioned proof
still holds if only A(t) is neutrally stable at all iterations, and the
convergence property of finite products of stochastic, indecompos-
able, and aperiodic (SIA) matrices [38] can be used to support this
proof.

Based on the above-mentioned analysis, all empirical risks Ek(i =
1, 2, . . . , N) converge to the minimal empirical risk E∗, and all
model parameters θi (i = 1, 2, . . . , N) converge to the optimal model
parameter θ∗, which implies the same conclusion that the pro-
posed distributed neural networks can converge to the same optimal
model.

IV. SIMULATION AND DISCUSSION

The proposed distributed training algorithm for multi-layer neural
networks contains a two-phase update procedure. The first phase is
training with a local sub-data set, which is performed simultaneously
at all agents over the graph, that is, multiple neural networks with
the same structure are trained only with their own local sub-data
set. In the second phase, these locally updated neural networks com-
municate with their directly connected neighbors to globally update
their model parameters using the consensus algorithm. As described
in Section III, this two-phase update process allows all the agents
to converge to the optimal model, and these models would show
comparable performance with a centralized training model based on
the entire data set.

Besides the fact that there is no need to exchange the data samples
or collected all the data samples centrally, another main advantage
of this proposed distributed training algorithm is its simple structure
and great expansibility. That is, it will not affect the convergence and
effectiveness of this method when a new agent joins in or leaves,
as long as it always exists a spanning tree over the graph, which is
also suitable for the changeable graph topology [39]. The specific
process of the distributed training algorithm for multi-layer neural
networks is summarized in Table I.

The decentralized graph in Fig. 1(b) is taken as an example, where
the entire data set is partitioned and distributed evenly on six agents,
and six neural networks with the same structure are also initialized
on each agent. For distributed training, the information of the model
parameter is allowed to be shared only among directly connected
neighbors, and there is no exchange of data samples. The following
three algorithms are compared to verify the effectiveness of the
proposed distributed training method.

1) Centralized Training: This is a single neural network training
with the entire data set, which can be taken as a baseline for
the distributed training method.

2) Distributed Training: In this case, the training data set is
distributed evenly on each agent over the decentralized graph,
and each agent trains a neural network with its own sub-data
set, with the consensus algorithm globally updating their model
parameters.

Authorized licensed use limited to: University of Manchester. Downloaded on February 21,2020 at 14:49:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Performance on training data set. (a) Twonorm. (b) Pendigits. (c) Cpusmall.

Fig. 3. Performance on test data set. (a) Twonorm. (b) Pendigits. (c) Cpusmall.

TABLE I

PROCESS OF DISTRIBUTED NEURAL NETWORKS

3) Local Training: As before, each agent only trains with its own
sub-data set without communication, and accuracy or error is
averaged throughout the nodes.

In all of the above-mentioned algorithms, Relu function is taken as
the hidden layer activation function, with model parameter extracted
randomly from a uniform distribution over the interval [−1, +1], and
all the input variables are normalized between 0 and 1. Classification
accuracy and mean absolute percentage error (MAPE) are used
to evaluate the performance of these algorithms for the task of
classification and regression, respectively. The whole algorithms are

TABLE II

DESCRIPTION OF THE DATA SETS AND MODELING PARAMETERS

implemented in Tensorflow and MATLAB

MAPE = 1

n

n∑

i=1

∣
∣
∣
∣

yi − ŷi

yi

∣
∣
∣
∣ (42)

where n denotes the number of samples and yi and ŷi are the actual
and estimated values of the i th sample, respectively.

The proposed distributed training algorithm is tested on three
public data sets (downloaded from UCI open data sets) for the tasks
of binary classification, multi-labeled classification, and regression,
respectively. The characteristics of these data sets and modeling
parameters are summarized in Table II, where η and α are the
learning rate and regularization coefficient of the L2 regularization
method [40].

Figs. 2 and 3 are the simulation results on the above-mentioned
three data sets in Table II, where we can find that all of the
six agents over the graph can exhibit a comparable performance
with centralized training using the proposed distributed training

Authorized licensed use limited to: University of Manchester. Downloaded on February 21,2020 at 14:49:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

Fig. 4. Comparison between distributed training and local training.
(a) Training data set. (b) Test data set.

algorithm, even though each agent of distributed training shows more
fluctuations and worse accuracy at the initial iterations. Local training
shows only a little worse performance than centralized training and
distributed training, as these three problems are relatively easy. It is
worth noting that all the agents gradually converge to the same model
during a certain number of iterations, although their initial statuses
are significantly different, which can verify the theorems proposed in
this brief. For the classification tasks, 20 and 30 steps are required for
all the agents to achieve consensus for the binary and multi-labeled
classification, respectively, and a little more steps are needed to
allow all the agents to exhibit a similar classification accuracy
as the centralized training model. As for the task of regression,
the six agents converge to each other after 15 iterations, while more
iterations are required for them to catch up with and even exceed the
performance of the centralized training model.

Other optimization methods can also be taken for gradient descent
and modeling hyper-parameters (hidden agents, regularization, and
learning rate) to further improve the performance of distributed
training, but it is out of the scope of this brief. Common modeling
methods are used in this brief for the convenience of the comparison
between distributed training and centralized training.

As the above-mentioned data sets are easy to fit, local training
can also have good performance. To further verify the superiority of
distributed training, the proposed algorithm is tested on a large-scale
data set, BlogFeedback (downloaded from the UCI Machine Learn-
ing Repository), which contains more than 50 000 samples and
280 features for the regression task. In this case, each agent has
6000 samples, and the rest samples are taken as the test data set, with
root mean squared error (RMSE) used to evaluate their performance.
A head-to-head comparison is made between distributed training and
local training, and the performance of which is shown in Fig. 4,
where node-i and local-i (i = 1, 2, . . . 6) denote the performance of
agents with and without the consensus process, respectively.

We can find from Fig. 4 that all the agents in distributed training
can converge to the same optimal model after 110 iterations, which
shows much better performance than centralized training and local
training. The training process helps each agent to find a better solution
in its basin of attraction, while the consensus process not only
decreases the upper bound of the parameter gaps between each agent
and the optimal model but also helps the agents to escape the basin
of attraction with a local minimum.

The partially magnified figure in Fig. 4 specifically shows the
influence of the consensus process on each agent, where all agents
converge to each other in ten iterations, even though their initial
statuses are significantly different. All locally trained agents without
the consensus process exhibit a slow converge rate individually,
while all agents with the consensus process approach each other
significantly during the first a few steps and then converge to the
optimal model in union. This attraction of each other drives all
agents to a good status in a few consensus steps and to converge
to the optimal model faster in the long run, even though some agents
(node-2 and node-5 in this experiment) get worse at the beginning
steps.

V. CONCLUSION

Distributed training has received great attention over the last
decade due to its wide real-world applications on large-scale and
privacy-concerned machine learning problems. It is common nowa-
days that all the data samples cannot be collected centrally and the
exchange of data samples is not allowed for computation restrictions
or privacy protection. However, the model needs to learn from the
entire data set instead of training with only the local sub-data set.
To deal with this problem, this brief proposed a distributed training
method using the consensus algorithm for multi-layer neural networks
over a decentralized graph without a central agent. Theoretical analy-
sis of the distributed neural networks shows that the performance of
distributed training could exhibit nearly the same performance with
centralized training when enough consensus steps are taken, but this
method is still computationally expensive. Furthermore, convergence
analysis gives the proof that distributed training allows all the agents
over a decentralized graph to converge to the optimal model even with
only a single consensus step after each training iteration, which could
greatly decrease the communication cost. This theorem is verified by
the results of the simulation, which demonstrates that the proposed
distributed training algorithm for the multi-layer neural networks can
achieve comparable or even better performance as the centralized
training model based on the entire data set.

REFERENCES

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[2] R. He, W.-S. Zheng, B.-G. Hu, and X.-W. Kong, “Two-stage nonnegative
sparse representation for large-scale face recognition,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 35–46, Jan. 2013.

Authorized licensed use limited to: University of Manchester. Downloaded on February 21,2020 at 14:49:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[3] Y. Zhang, P. Li, Y. Jin, and Y. Choe, “A digital liquid state machine with
biologically inspired learning and its application to speech recognition,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 11, pp. 2635–2649,
Nov. 2015.

[4] Y. Miao, L. Yu, and P. Blunsom, “Neural variational inference for text
processing,” in Proc. Int. Conf. Mach. Learn., Jun. 2016, pp. 1727–1736.

[5] N. R. Sabar, J. Abawajy, and J. Yearwood, “Heterogeneous coopera-
tive co-evolution memetic differential evolution algorithm for big data
optimization problems,” IEEE Trans. Evol. Comput., vol. 21, no. 2,
pp. 315–327, Apr. 2017.

[6] Z. Wang, J. Liao, Q. Cao, H. Qi, and Z. Wang, “Friendbook: A semantic-
based friend recommendation system for social networks,” IEEE Trans.
Mobile Comput., vol. 14, no. 3, pp. 538–551, Mar. 2015.

[7] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4,
pp. 56–69, Jul. 2006.

[8] M. Fahimi and A. Ghasemi, “A distributed learning automata scheme for
spectrum management in self-organized cognitive radio network,” IEEE
Trans. Mobile Comput., vol. 16, no. 6, pp. 1490–1501, Jun. 2017.

[9] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” J. Mach. Learn. Res., vol. 11,
pp. 1663–1707, Jan. 2010.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[11] L.-Y. Ho, J.-J. Wu, and P. Liu, “Adaptive communication for distributed
deep learning on commodity GPU cluster,” in Proc. 18th IEEE/ACM Int.
Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2018, pp. 283–290.

[12] B. Zhang, J. Lam, and S. Xu, “Stability analysis of distributed delay
neural networks based on relaxed Lyapunov–Krasovskii functionals,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 7, pp. 1480–1492,
Jul. 2015.

[13] E. Castillo, D. Peteiro-Barral, B. G. Berdiñas, and O. Fontenla-Romero,
“Distributed one-class support vector machine,” Int. J. Neural Syst.,
vol. 25, no. 7, 2015, Art. no. 1550029.

[14] W. Kim, M. S. Stanković, K. H. Johansson, and H. J. Kim, “A distributed
support vector machine learning over wireless sensor networks,” IEEE
Trans. Cybern., vol. 45, no. 11, pp. 2599–2611, Nov. 2015.

[15] S. Scardapane, D. Wang, M. Panella, and A. Uncini, “Distributed
learning for random vector functional-link networks,” Inf. Sci., vol. 301,
pp. 271–284, Apr. 2015.

[16] S. Scardapane, D. Wang, and M. Panella, “A decentralized training
algorithm for echo state networks in distributed big data applications,”
Neural Netw., vol. 78, pp. 65–74, Jun. 2015.

[17] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835–1854, 2016.

[18] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and
J. Liu, “Can decentralized algorithms outperform centralized algorithms?
A case study for decentralized parallel stochastic gradient descent,” in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 5330–5340.

[19] L. Georgopoulos and M. Hasler, “Distributed machine learning in
networks by consensus,” Neurocomputing, vol. 124, pp. 2–12, Jan. 2014.

[20] L. Shao, D. Wu, and X. Li, “Learning deep and wide: A spectral method
for learning deep networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 12, pp. 2303–2308, Dec. 2014.

[21] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, Jan. 2014.

[22] M. A. Alsheikh, S. Lin, D. Niyato, and H. P. Tan, “Machine learn-
ing in wireless sensor networks: Algorithms, strategies, and applica-
tions,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1996–2018,
4th Quart., 2014.

[23] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in Proc. 11th USENIX Conf. Oper. Syst. Design Implement.,
vol. 14, Oct. 2014, pp. 583–598.

[24] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed
mean estimation with limited communication,” in Proc. 34th Int. Conf.
Mach. Learn., vol. 70, Aug. 2017, pp. 3329–3337.

[25] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[26] M. Toulouse, B. Q. Minh, and P. Curtis, “A consensus based net-
work intrusion detection system,” in Proc. 5th Int. Conf. IT Converg.
Secur. (ICITCS), Aug. 2015, pp. 1–6.

[27] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM Rev., vol. 46, no. 4, pp. 667–689, 2003.

[28] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooper-
ative Control of Multi-Agent Systems: Optimal and Adaptive Design
Approaches. New York, NY, USA: Springer, 2013.

[29] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent
provably optimizes over-parameterized neural networks,” 2018,
arXiv:1810.02054. [Online]. Available: https://arxiv.org/abs/1810.02054

[30] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent
finds global minima of deep neural networks,” 2018, arXiv:1811.03804.
[Online]. Available: https://arxiv.org/abs/1811.03804

[31] Y. Li and Y. Liang, “Learning overparameterized neural networks via
stochastic gradient descent on structured data,” in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 8168–8177.

[32] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms
for decentralized and stochastic optimization,” 2017, arXiv:1701.03961.
[Online]. Available: https://arxiv.org/abs/1701.03961

[33] B. Sirb and X. Ye, “Consensus optimization with delayed and stochastic
gradients on decentralized networks,” in Proc. IEEE Int. Conf. Big Data
(Big Data), Dec. 2016, pp. 76–85.

[34] G. Lan and Y. Zhou, “Asynchronous decentralized accelerated sto-
chastic gradient descent,” 2018, arXiv:1809.09258. [Online]. Available:
https://arxiv.org/abs/1809.09258

[35] Q. Ma, F. L. Lewis, and S. Xu, “Cooperative containment of discrete-
time linear multi-agent systems,” Int. J. Robust Nonlinear Control,
vol. 25, no. 7, pp. 1007–1018, 2015.

[36] Z.-K. Li and Z. Duan, Cooperative Control of Multi-Agent Systems: A
Consensus Region Approach. Boca Raton, FL, USA: CRC Press, 2014.

[37] Z. Ding, “Consensus control of a class of Lipschitz nonlinear systems,”
Int. J. Control, vol. 87, no. 11, pp. 2372–2382, 2014.

[38] W. Ren, R. W. Beard, and D. B. Kingston, “Multi-agent Kalman
consensus with relative uncertainty,” in Proc. Amer. Control Conf.,
Jun. 2005, pp. 1865–1870.

[39] H. Jiang, Q. Bi, and S. Zheng, “Impulsive consensus in directed networks
of identical nonlinear oscillators with switching topologies,” Commun.
Nonlinear Sci. Numer. Simul., vol. 17, no. 1, pp. 378–387, 2012.

[40] A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and rotational
invariance,” in Proc. 21st Int. Conf. Mach. Learn., Jun. 2004, p. 78.

Authorized licensed use limited to: University of Manchester. Downloaded on February 21,2020 at 14:49:15 UTC from IEEE Xplore. Restrictions apply.

