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Dear editor,
Distributed optimization problems (DOPs) have
attracted significant attention in the past decade,
due to their potential applications in a variety of
scenarios such as sensor networks, distributed pa-
rameters estimation, and power system economic
dispatch. An important class of DOPs refers to
minimizing the sum of local objective functions
(see, e.g., [1–3]):

min
ω∈Rn

f(ω) = min
ω∈Rn

N∑
i=1

fi(ω), (1)

where N is the number of agents, fi : Rn → R
is the local cost function of agent i, and f =∑N

i=1 fi(ω) is the global cost function of the net-
work.

To solve problem (1), two continuous-time
schemes are designed from a control perspective
in [4] to find the optimal solution with centralized
and distributed structures, respectively. The dis-
tributed scheme achieves asymptotic convergence
for constrained optimization problem on directed
graphs. For the system with twice differentiable
local cost functions, zero-gradient-sum method in
[5] achieves exponential convergence if the initial
value of states are the optimal solution of local cost
functions. To remove the restriction on the initial
condition, Lagrangian based algorithms are pro-
posed in [2]. A remarkable feature of Lagrangian
based algorithms is the use of auxiliary states
which can also be regarded as Lagrangian multipli-

ers. However the algorithms in [2] need to transmit
the auxiliary states over the network. To reduce
the communication cost, a new Lagrangian based
algorithm is designed in [3]. Sufficient conditions
are established to guarantee the exponential con-
vergence of the algorithm.

The aforementioned works require that the com-
munication structures are undirected or at least
balanced. Moreover, to eliminate the communica-
tion of auxiliary states, the lower bound of local
convexity constants are used to establish the con-
vergence of algorithms [3, 6]. Designing optimiza-
tion algorithms on a more general communication
structure and relaxing the assumptions on the lo-
cal gradients remain as ongoing research issues.

In this letter, we consider the distributed opti-
mization problem where each agent has a strongly
convex cost function with globally Lipschitz gradi-
ents. A continuous-time algorithm is presented for
unbalanced directed graphs. Sufficient conditions
for the convergence are derived based on invari-
ance and Lyapunov stability theory. By introduc-
ing a semi-positive definite term to the Lyapunov
function and exploring the invariant projection of
Laplacian matrix, the requirement of the lower
bound of local convexity constants is removed. Fi-
nally, we build a experiment on a distributed mi-
crocomputer platform to validate the results.

Methodology. Consider a group of N agents.
The communication topology among agents is de-
scribed by the directed graph G. The set of agents
is defined as V = {1, · · · , N}. The adjacency ma-
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trix is defined as A = [αij ] ∈ RN×N , where αii = 0
and αij = 1 if the ith agent can get the informa-
tion from the jth agent, otherwise αij = 0. The
Laplacian matrix L = [lij ] ∈ RN×N associated

with G is defined as lii =
∑N

j=1 aij and lij = −aij ,
for i 6= j. A directed graph is strongly connected
if there exists a directed path from every agent to
every other agent.

Throughout this letter, we make following as-
sumptions.

Assumption 1. Each local objective function fi
is strongly convex and differentiable with globally
Lipschitz gradient, i.e., there exists Ki ∈ R>0 such
that ‖5fi(x)−5fi(y)‖ 6 Ki ‖x− y‖, ∀x, y ∈ Rn.

With Assumption 1, the global objective func-
tion f is also strongly convex, and the solution of
problem (1) is unique.

Assumption 2. The communication topology G
is strongly connected.

With Assumption 2 and [7, Lemma 2.1], follow-
ing similar steps in [1], we transform the problem
(1) into a minimization problem under a consensus
condition.

min
x∈RNn

f̃(x) =

N∑
i=1

fi(xi),

s.t. (L ⊗ In)x = 0Nn, (2)

where xi ∈ Rn is the state of ith agent, x is the ag-
gregated variable of xi, and 0Nn denotes a column
vector of size Nn with all entries equal to zero. In
the following, we will introduce the main results of
this letter.

A continuous-time optimization algorithm is de-
signed as

ẋ = −γ 5 f̃(x)− α (ΞL ⊗ In)x− v, (3a)

v̇ = αβ (ΞL ⊗ In)x, (3b)

where vi ∈ Rn is the auxiliary state of ith
agent, v is the aggregated variable of vi,
γ, α, β ∈ R>0 are constant gains, 5f̃(x) =
[5f1(x1)T,5f2(x2)T, · · · ,5fN (xN )T]T is the
gradient of f̃ , and Ξ is defined in [7, Lemma 2.2]

Lemma 1. Under Assumptions 1 and 2, the
equilibrium point of (3) satisfying (x̄, v̄) ∈ P0(0) is
an optimal solution of problem (2), where P0(0) =
{(x, v) ∈ RNn × RNn | (1T

N ⊗ In)v = 0n}.
Proof. Note that the equilibrium point (x̄, v̄) of
(3) satisfies

x̄ = 1N ⊗ a, ∀a ∈ Rn,

v̄ = −γ 5 f̃(x̄).

Applying (1T
N ⊗ In)v̄ = −γ

∑N
i=1 fi(x̄) = 0n, we

have that (x̄, v̄) is the optimal solution (x?, v?). /

Theorem 1. Under Assumptions 1 and 2, algo-
rithm (3) solves the distributed optimization prob-
lem (2) for (x(0), v(0)) ∈ P0(0), if α, β, γ ∈ R>0

satisfy

(δ + 1)γβ − 2γ2K̄ > 0, (4a)

(2δ + 1)λ2(L̄)αβ − 17

2
(δ + 1)2β2 > 0, (4b)

where δ ∈ R>0, K̄ = max{K1,K2, · · · ,KN},
L̄ = ΞL + LTΞ and λ2(L̄) denotes the smallest
nonzero eigenvalues of L̄.

Proof. Define ρ = x− x̄, % = v − v̄. We can get
the network dynamics

ρ̇ = −γh− α (ΞL ⊗ In) ρ− %,
%̇ = αβ (ΞL ⊗ In) ρ,

where h = 5f̃(x)−5f̃(x̄).
Consider the following Lyapunov function can-

didate

V2 =
1

2
ρT (((δ + 1)βΠ + δβIN )⊗ In) ρ

+
1

2β
(βρ+ %)T(βρ+ %),

where Π = IN − 1
N 1N1T

N .
The time derivative of V2 along (3) is given by

V̇2 = −(δ + 1)γβρTh− (δ + 1)γβρT (Π⊗ In)h

− (2δ + 1)

2
αβρT

(
L̄ ⊗ In

)
ρ− (δ + 1)βρT%

−(δ + 1)βρT (Π⊗ In) %− γ%Th− %T%. (5)

Note that P0(0) is positive invariant under (3).
Furthermore, for (x, v) ∈ P0(0), we have ρT% =
ρT (Π⊗ In) %. Using this fact, we can rewrite (5)
as

V̇2 =− (δ + 1) γβρTh− (δ + 1)γβρT (Π⊗ In)h

− 2(δ + 1)βρT (Π⊗ In) %− γ%Th− %T%

− (2δ + 1)

2
αβρT

(
L̄ ⊗ In

)
ρ

6−
(
(δ + 1) γβ − 2γ2K̄

)
ρTh− 1

2
%T%

−
∥∥∥∥2 (δ + 1)β (Π⊗ In) ρ+

1

2
%

∥∥∥∥2 − ∥∥∥∥γh+
1

2
%

∥∥∥∥2
−
∥∥∥∥1

2
(δ + 1)β (Π⊗ In) ρ+ γh

∥∥∥∥2
− ρT

((
(2δ + 1)

2
αβL̄ − 17

4
(δ + 1)2β2Π

)
⊗ In

)
ρ.

The last equality follows the facts that ΠΠ = Π
and hTh 6 K̄ρTh.
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Since L̄Π = ΠL̄, by [8, Theorem 4.1.6], there
exists an orthogonal matrix U ∈ RN×N such that

(2δ + 1)

2
αβL̄ − 17

4
(δ + 1)2β2Π

= U

 (2δ + 1)

2
αβ


0 0 · · · 0

0 λ2(L̄) · · · 0
...

...
. . .

...

0 0 · · · λN (L̄)



− 17

4
(δ + 1)2β2


0 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


UT. (6)

Applying ρTh > 0, (4) and (6), we have V̇2 6
0. Therefore, we can conclude that the vari-
ables ρ and % are bounded. From LaSalle’s in-
variance principle, we have limt→∞ ρTh = 0 and
limt→∞ % = 0Nn, which implies that xi converges
to the optimal solution of problem (2) as t → ∞,
for i = 1, · · · , N . /

There always exist α, β, γ ∈ R>0 satisfying (4);
e.g., by choosing β, γ, δ ∈ R>0 satisfying (4a), we
can find sufficiently large α to have (4b). The tun-
ning of α and γ is decoupled.

Experiment Validation. A microcomputer plat-
form is used to validate the design of algorithm
(3). The microcomputer platform shown in Fig-
ure 1(left) consists of a router and 5 microcomput-
ers. Each microcomputer has a onboard proces-
sor Cortex-A53 running at 1.2 GHz and a micro-
SD card. The router is used to set up the wire-
less communication among microcomputers, each
of which can get the state information of its neigh-
bors through a 802.11n wireless LAN that is pro-
vided by the onboard chip BCM43438.

Consider a network of 5 agents with local cost
functions given by

f1 = x
4
3 , f2 = e0.2x,

f3 = (x+ 2)2, f4 = 0.1x2 +
x2√
x2 + 1

,

f5 = x2 + ln(x2 + 1), (7)

where x ∈ R. The initial states xi(0), i =
1, 2, · · · , 5 are randomly selected within [0.11, 1].
Then we can calculate the optimal solution x? =
0.6575. To satisfy (x(0), v(0)) ∈ P0(0), vi(0) are
set as 0, ∀i = 1, 2, · · · , 5. The parameters are cho-
sen as α = 6, β = 1, and γ = 1. The communica-
tion structure G is shown in Figure 1(left).

To implement the algorithms (3) on hardware
platform, the gradients 5fi, which include terms
x

1
3 ,
√
x2 + 1 and e0.2x, are approximated by a

Newton iterative method and Taylor series. The
accuracy of approximation is set as 10−5. The
integrations are calculated using a forward Euler
method. Furthermore the frequency of algorithm
(3) is 100 Hz.

The result in Figure 1(right) shows that all the
trajectories of states converge to the optimal solu-
tion, implying (3) can be implemented on embed-
ded systems with limited computation capability.
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Figure 1 Communication structure G (left); the agent
states xi, 1, 2, · · · , 5 (right).

Conclusion. In this letter, we consider the DOP
on unbalanced directed graphs. Sufficient condi-
tions for the convergence are established without
the knowledge of the lower bound of local convex-
ity constants. The experiment results show that
our algorithm can be implemented on embedded
systems with limited computation capability.
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