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Robust Cooperative Guidance Law for
Simultaneous Arrival

Zhenhong Li, Zhengtao Ding, Senior Member, IEEE

Abstract—In the cooperative simultaneous arrival problem, a
group of interceptors are guided to simultaneously engage a
stationary target. However, some interceptors may not follow
the prescribed guidance law during the engagement, which can
lead to interception failures. This brief investigates a new robust
cooperative simultaneous arrival problem in the presence of
misbehaving interceptors. A robust cooperative guidance law
(RCGL) integrated with a local filtering algorithm is designed.
Without the knowledge of faulty interceptors (no fault diagnosis
procedure is needed), the RCGL achieves a simultaneous arrival
between normal interceptors if the misbehavior of faulty inter-
ceptors can be characterized by a threat model. By characterizing
the contracting behavior of the maximum gap between impact
time estimates of normal interceptors, sufficient conditions are
established to guarantee the convergence of RCGL. Furthermore,
regardless the network connections, the impact times of normal
interceptors are upper bounded by the maximum initial time-to-
go estimate of normal interceptors. Numerical comparison studies
demonstrate the guidance performance of RCGL.

Index Terms—Robust cooperative guidance law; cooperative
control; simultaneous arrival.

I. INTRODUCTION

The simultaneous arrival problem of multiple interceptors
has become more interesting over the past few years (see,
e.g., [1]–[8]). In general, the problem can be solved by two
methods: 1) individual homing, e.g., [1]–[3]; 2) cooperative
homing, e.g., [4]–[8]. Compared to the individual homing,
the cooperative homing requires no predetermination of a
common impact time. The group of interceptors synchronize
the impact time by addressing the consensus problem of time-
to-go estimates of interceptors.

The advancement of defense systems poses new challenges
in homing guidance. It is important to increase the relia-
bility of the cooperative guidance, especially, when some
interceptors are destroyed or disturbed by the defense system
of the target. However, studies on the robust simultaneous
arrival problem in the presence of misbehaving interceptors
are rare. The authors in [6] and [7] proposed two finite-time
cooperative guidance laws (FTCGLs) based on classic graph
theory and discussed the guidance performances of FTCGLs
under communication faults and actuator faults. But the faulty
interceptor must remain controllable and can not be the root
of the communication structure. Since the defense systems
of the target may destroy or disturb the interceptor and self-
faults may happen during the engagement, the controllability
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of faulty interceptors is hard to preserve. It remains an open
problem to design a robust guidance law such that 1) all
normal interceptors can reach the target without identifying
faulty interceptors; 2) all normal interceptors reach the target
at the same time as much as possible.

In this brief, we consider a new robust cooperative si-
multaneous arrival problem when some interceptors may not
follow the prescribed guidance law during the engagement.
The unknown dynamics caused by faulty interceptors make
the cooperative guidance design for the normal interceptors
difficult. Inspired by the time-to-go approximate model in [4]
and the notion of network robustness [9]–[11], we integrate a
local filtering algorithm with other cooperative guidance law
and present a useful robust cooperative guidance law (RCGL).
If the misbehavior of faulty interceptors can be characterized
by a threat model (each faulty interceptor sends the same value
to all of its out-neighbors at each time-step), the RCGL can re-
duce the variance of impact times between normal interceptors
without identifying faulty interceptors. Regardless the network
connections, the impact times of normal interceptors are upper
bounded by the maximum initial time-to-go estimate of normal
interceptors, which can be seen as a safety condition. By
discarding some extreme time-to-go estimates of in-neighbors
at each time-step, the integrated local filtering algorithm of
RCGL filters undesirable dynamics caused by faulty inter-
ceptors. Sufficient conditions are established to guarantee the
consensus of time-to-go estimates of normal interceptors. The
convergence analysis of RCGL is based on characterizing the
contracting behavior of the maximum gap between impact
time estimates of normal interceptors. Numerical comparison
results demonstrate the effective guidance performance of
RCGL.

The remainder of this brief is organized as follows. Section
II formulates the robust simultaneous arrival problem with a
single target and introduces the preliminaries. The main results
of RCGL are given in Sections III and IV. In Section V,
comparison simulation results of 5 to 1 robust engagement
scenario are presented.

II. PROBLEM STATEMENT

Consider the scenario that a group of N interceptors attack a
stationary target on a two-dimensional plane by assuming that
the lateral and longitudinal planes are decoupled by means of
roll control [12]. The planar engagement geometry is shown
in Fig. 1.

In Fig. 1, for the ith interceptor, ri is the rang-to-go;
λi is the LOS angle; γi is the flight-path angle; σi is the
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Fig. 1. Guidance geometry on N to 1 engagement scenario.

heading error; Vi is the interceptor speed, which is assumed
to be constant during the engagement; ai is the acceleration,
which is perpendicular to Vi. The planar interceptor-target
engagement kinematics are given as

ṙi =− Vicos(σi),

λ̇i =− Visin(σi)

ri
,

γ̇i =
ai
Vi
,

σi =γi − λi, i = 1, · · · , N. (1)

where ai is the control input for ith interceptor.
Suppose each interceptor uses well-known proportional nav-

igation (PN) for homing as

ai = NsViλ̇i,

where Ns denotes the fixed navigation constant (in practice,
Ns is usually chosen as 3 ≤ Ns ≤ 5). When the heading
error σi is small, the time-to-go of the ith interceptor can be
approximated as [4]

t̂go,i =
ri
Vi

(
σ2
i

2Ns − 1
+ 1), i = 1, · · · , N. (2)

Note that σi is small in general cases.
Now consider a robust simultaneous arrival problem with N

interceptors shown in Fig.2. The N interceptors are partitioned
into a set of normal interceptors N = {i ∈ 1, · · · , N :
ith interceptors is normal}, and a set of faulty interceptors
F = {i ∈ 1, · · · , N : ith interceptor is misbehaving},
the number of faulty interceptor is upper bounded by F .
The communications between interceptors happen at times
t0, t1, · · · , tk, · · · , and the communication period is τ , i.e.,
tk − tk−1 = τ .

The communication topology among interceptors is de-
scribed by the directed graph G. The set of interceptors is
defined as V = {1, · · · , N}. The adjacency matrix is defined
as A = [αij ] ∈ RN×N , where αii = 0 and αij = 1
if the ith interceptor can get the information from the jth
interceptor, otherwise αij = 0. The jth interceptor is called
an in-neighbor of ith interceptor if αij = 1. The in-neighbors
of ithe interceptor are defined as a set Vi = {j ∈ V : αij = 1}.
The jth interceptor is called an out-neighbor of ith interceptor
if αji = 1 (i.e., the jth interceptor can get the information
from the ith interceptor).

Fig. 2. N to 1 robust simultaneous arrival scenario.

We make following assumptions throughout this brief.
Assumption 1: The speed of each interceptor is constant but

may not be the same as that of other interceptors.
Assumption 2: Each faulty interceptor sends the same value

to all of its out-neighbors at each time-step (e.g., for a faulty
interceptor i, all the out-neighbors of i receive the same value
from i at tk).

Remark 1: In practice, Assumption 2 is nonrestrictive and
easy to satisfy. For example, if the communication is realized
through wireless broadcast, the faulty interceptor i naturally
sends the same value to all of its out-neighbors.

The objective of this brief is to design a PN based RCGL
to meet following demands:

1) all normal interceptors can reach the target without the
knowledge of fault interceptors.

2) all normal interceptors reach the target at the same time
as much as possible.

Remark 2: Although the threat model in Assumption 2 is
defined according to the communication behavior, this threat
model covers a wide range of faults in practice; not only the
communication faults, but also actuator faults which cause
undesirable changes in t̂go,i are considered. It is plausible that
some simple misbehaviors can be detected via an appropriate
mechanism. However, for some complicate faults, especially
in the short range guidance, it is hard to detect the faulty in-
terceptors and reorganize the communications between normal
interceptors. Moreover, the cooperative guidance performance
will be degraded by the increasing time of fault diagnosis.

III. RCGL WITH A LOCAL FILTERING ALGORITHM

In this section, a novel cooperative guidance law with a
local filtering algorithm is designed to solve the simultaneous
arrival problem. By virtue of the integrated local filtering
algorithm, the proposed cooperative guidance law is robust
to the misbehaviors of faulty interceptors. With exchanging
the time-to-go estimates t̂go,i at discrete-time, the RCGL is
designed as

ai(t) = Ns

(
1 + ki

∑
j∈Ri(tk)

wij(tk)
(
t̂go,i(tk)

− t̂go,j(tk)
))
Viλ̇i, ∀t ∈ [tk, tk+1), (3)
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where i = 1, · · · , N , ki > 0 are constants, Ri(tk) is the set
of retained in-neighbors of ith interceptor at tk, t̂go,j(tk) and
wij(tk) are defined in the local filtering algorithm running at
times {tk}.

Algorithm 1: Local Filtering for ith interceptor
Input: Fixed navigation constant Ns, upper bound of the

number of faulty interceptors F , range-to-go
ri(tk), interceptor speed Vi, heading error σi(tk).

Output: In-neighbors after filtering Ri(tk), time-to-go
estimates of filtered in-neighbors {t̂go,j(tk),
j ∈ Ri(tk)}, time-varing comminication
weights wij(tk).

1 ith interceptor estimates its time-to-go
t̂go,i(tk) = ri(tk)

Vi(tk) (σi(tk)2

2Ns−1 + 1);
2 ith interceptor receives time-to-go estimates {t̂go,j(tk),

j ∈ Vi} from its in-neighbors and sends t̂go,i(tk) to its
out-neighbors;

3 ith interceptor sorts the gathered estimates {t̂go,j(tk),
j ∈ Vi}, and forms a sorted list;

4 if there are less than F estimates larger (resp. smaller)
than its own estimate t̂go,i(tk), then

5 ith interceptor removes all estimates that are larger
(resp. smaller) than its own estimate;

6 else
7 ith interceptor removes F largest (resp. F smallest)

estimates;
8 end
9 Define Ri(tk) as the set of in-neighbors of ith interceptor

whose time-to-go estimate is retained at time-step tk;
10 The time-varying communication weights are defined as

wij(tk) =


αij∑

j∈Ri(tk) αij
, ∀j ∈ Ri(tk),

0, otherwise.

The RCGL has a simple structure which is composed
of a traditional PN feedback loop, a cooperative time-
to-go feedback loop and a novel local filtering algo-
rithm. Note that RCGL is a continuous-time guidance law;
however, the communications between interceptors are in
discrete-time structures. The retained in-neighbors of ith
interceptor are switching due to the local filtering al-
gorithm. The RCGL uses the relative time-to-go errors∑
j∈Ri(tk) wij(tk)

(
t̂go,i(tk)− t̂go,j(tk)

)
to adjust the cur-

vature of the interceptors’s trajectories; interceptors with
smaller time-to-go estimates take detours, and intercep-
tors with larger time-to-go estimates take shortcuts. When∑
j∈Ri(tk) wij(tk)

(
t̂go,i(tk)− t̂go,j(tk)

)
= 0 at any tk, the

simultaneous arrival is achieved, and RCGL becomes PN with
fixed navigation constant Ns. In Algorithm 1, no additional
procedure (e.g., fault detection) is needed, and the information
used in the algorithm is the same as that of existing PN based
cooperative guidance laws. The data flow structure of ith in-
terceptor in the cooperative guidance is shown in Fig. 3. In the
figure, at each time-step, ith interceptor communicates with its

neighbors, removes some time-to-go estimates of in-neighbors
according to the rules in Algorithm 1 and recalculates the
communication weights wij(·). The controller calculates the
acceleration command by using continuously measurements
and sampled time-to-go estimates. The rigorous convergence
analysis of RCGL is performed in the following section.

IV. CONVERGENCE ANALYSIS OF RCGL

In this section, sufficient conditions are established to guar-
antee the convergence of RCGL. Before introducing the main
results of this section, an important definition is given as
follow

Definition 1 ((r, s)-robust graphs): For two positive integers
r and s, a graph G is said to be (r, s)-robust if for any two
disjoint nonempty subsets S1, S2 ∈ V , at least one of the
following holds:

1) Every interceptor in S1 has at least r in-neighbors
outside S1.

2) Every interceptor in S2 has at least r in-neighbors
outside S2.

3) There are at least s interceptors in S1 ∪S2 that each in-
terceptor has at least r in-neighbors outside its respective
sets.

From lines 4−7 in Algorithm 1, we know that each interceptor
periodically discards some of its in-neighbors. Definition 1
aims to capture the idea that for any two disjoint nonempty
subsets, there are some interceptors within those sets that each
of them has enough in-neighbors outside its respective sets.
This definition plays a key role in our convergence analysis.

Define T̂i(tk) = t̂go,i(tk) +kτ as the impact time estimates
of ith interceptors at time tk. Note that T̂i(t0) = t̂go,i(t0),
and we have t̂go,1(tk) = · · · = t̂go,N (tk) if T̂1(tk) =
· · · = T̂N (tk). Define m(tk) = min{T̂i(tk),∀i ∈ N} and
M(tk) = max{T̂i(tk),∀i ∈ N}; m(tk) and M(tk) are the
lower and upper bounds of the impact time estimates of normal
interceptors at tk, respectively.

Theorem 1: Suppose that there are at most F faulty intercep-
tors within a group of N interceptors. Under Assumptions 1,
2 and RCGL, the impact time estimates of normal interceptors
T̂i(tk),∀i ∈ N are bounded within [m(t0),M(t0)], regardless
of the network connections of interceptors and the misbehav-
iors of faulty interceptors, if max{ki,∀i ∈ V} < 2Ns−1

Nsπ2τ .
Proof: Since σi are small angles in general cases [4]; thus,

we have sin(σi) = σi and cos(σi) = 1− σ2
i

2 . Substituting (3)
into (1), we have

ṙi =− Vi(1−
σ2
i

2
),

σ̇i =− Viσi
ri

(
Ns − 1 +Nski

∑
j∈Ri(tk)

wij(tk)

·
(
t̂go,i(tk)− t̂go,j(tk)

))
, ∀t ∈ [tk, tk+1) (4)

where i = 1, · · · , N .
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Fig. 3. Data flow structure of ith interceptor under RCGL

We can get the difference equation from the above results
and (2)

t̂go,i(tk+1) =t̂go,i(tk) +

∫ τ

0

˙̂tgo,i(t)

=

∫ τ

0

ṙi
Vi

(1 +
σ2
i

2(2Ns − 1)
) +

riσiσ̇i
Vi(2Ns − 1)

dt

+ t̂go,i(tk)

=−Ki

∑
j∈Ri(tk)

wij(tk)
(
t̂go,i(tk)− t̂go,j(tk)

)
+ t̂go,i(tk)− τ, (5)

where Ki =
Nsσ

2
i kiτ

2Ns−1 . Since max{ki,∀i ∈ V} < 2Ns−1
Nsπ2τ and

σ2
i ≤ π2, we have 0 < Ki < 1, ∀i = 1, · · · , N .
The difference equations of impact time estimates are given

as

T̂i(tk+1) =

1−Ki

∑
j∈Ri(tk)

wij(tk)

 T̂i(tk)

+Ki

∑
j∈Ri(tk)

wij(tk)T̂j(tk). (6)

Note that
∑
j∈Ri(tk) wij(tk) = 0 if Ri(tk) = ∅. Otherwise

we have that
∑
j∈Ri(tk) wij(tk) = 1.

For a normal interceptor i ∈ N , consider following situa-
tions.

1) Ri(tk) = ∅.
2) Ri(tk) ⊆ N .
3) Ri(tk) ∩ F 6= ∅, where ∅ denotes the empty set.
For the first situation, all in-neighbors of ith interceptor are

removed. Then the RCGL becomes a PN guidance law and
T̂i(tk+1) = T̂i(tk) ∈ [m(tk),M(tk)].

For the second situation, all the remaining interceptors are
normal. Since 0 < Ki < 1, together with (6), we can get that
Ti(tk+1) is a convex combination of itself and T̂j(tk),∀j ∈
Ri(tk). Then, T̂i(tk+1) ∈ [m(tk),M(tk)].

For the third situation, there is at least one faulty interceptor
in Ri(tk). For the reason that ith interceptor removes at most
F in-neighbors which have larger (resp. smaller) time-to-
go estimates than ith interceptor, and the number of faulty
interceptor is upper bounded by F , there must be at least
one normal interceptor (can be ith interceptor) in N that has
a larger time-to-go estimate than the time-to-go estimates of
all faulty interceptors in Ri(tk) ∩ F ; furthermore, there must
be at least one normal interceptor (can be ith interceptor) in

N that has a smaller time-to-go estimate than the time-to-go
estimates of all faulty interceptors inRi(tk)∩F . Then we have
T̂i(tk+1) ∈ [m(tk),M(tk)]. Based on the above analysis, we
can conclude that {M(tk)} and {m(tk)} are monotone and
bounded sequences. Furthermore, T̂i(tk+1) ∈ [m(t0),M(t0)].

Remark 3: Theorem 1 shows that the impact time
estimates of normal interceptors are always within[
min{t̂go,i(t0),∀i ∈ N} , max{t̂go,i(t0),∀i ∈ N}

]
. Note

that t̂go,i = 0 only when ri(t) = 0 (i.e., ith interceptor
reaches the target). Together with Theorem 1, we can obtain
t̂go,i(tk) + kτ ≤ max{t̂go,i(t0),∀i ∈ N}, which implies that
all normal interceptors will reach the target no later than
max{t̂go,i(t0),∀i ∈ N}, regardless misbehaviors of faulty
interceptors.

Remark 4: When the communication period τ is sufficiently
small, any positive constant ki can guarantee the boundedness
of T̂i(tk).

Theorem 2: Suppose that there are at most F faulty intercep-
tors within a group of N interceptors and the communication
graph G is (F +1, F +1)-robust. Under Assumptions 1 and 2,
the difference between the upper and lower bounds of the im-
pact time estimates of normal interceptors, i.e., M(tk)−m(tk),
monotonously converges to 0 if max{ki,∀i ∈ V} < 2Ns−1

Nsπ2τ .
Proof: The proof is stated in Appendix.

Corollary 1: Under assumptions in Theorem 2, V̄ (tk) =
M(tk)−m(tk) exponentially converges to 0 as k →∞.

Proof: The proof follows similarly as in Theorem 2.
Remark 5: limk→∞M(tk) − limk→∞m(tk) = 0 implies

that limk→∞ t̂go,i, ∀i ∈ N will reach an agreement and the
simultaneous arrival will be achieved. Since the guidance time
is finite in implementations, the difference M(tk)−m(tk) will
be nonzero. Nevertheless, M(tk) − m(tk) is monotonously
decreasing during the engagement and can be tuned by the
parameters ki and τ . Normally, under same faulty conditions
and initial conditions, if τ is chosen to be sufficiently small, a
system with larger gains Nski will have a smaller M(t)−m(t)
at the time instant t.

Remark 6: Under Assumption 2, the faulty interceptors are
allowed to send any value as a time-to-go estimate to their out-
neighbors. If a fault happens during the engagement, we do not
assume the faulty interceptors know the time-to-go estimates
of other interceptors.

Remark 7: In implementations, F is estimated according
to the communication network reliability, the failure rate of
interceptors and the robustness of RCGL that we want to
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Fig. 4. Communication topology G1.

achieve. Note that we can get the maximum feasible value of
F if the communication network has been set up. Furthermore,
there is a tradeoff between the communication load and the
robustness of RGCL. In general, the RGCL with larger F will
have a higher communication cost. In this brief, we assume
F is available. Specific steps for constructing a (r, s)-robust
graph are given in [10].

Remark 8: In light of the existing cooperative guidance
laws, there are only a few results cover the simultaneous
arrival under fault conditions ( [6], [7]). These results all
based on the assumptions that faulty interceptors can still
reach the target (i.e., the faulty interceptor is still controllable)
and all the interceptors send correct time-to-go estimates to
their out-neighbors. However, when faulty interceptors can not
reach the target (e.g., actuator fault happens, ai = 0 at all
times) or faulty interceptors keep sending incorrect time-to-
go estimates to their out-neighbors, the existing cooperative
guidance laws can not guarantee the simultaneous arrival for
normal interceptors. In fact, in the worst case, the normal
interceptors which influenced by faulty interceptors can not
even reach the target. Different from these existing guidance
laws, by virtue of the embedded local filtering algorithm, the
RCGL filters the undesirable effects of faulty interceptors and
achieves the simultaneous arrival between normal interceptors.

V. NUMERICAL SIMULATION

In this section, simulation studies are carried out to inves-
tigate the characteristics of RCGL. Consider an engagement
scenario that 5 interceptors attack a single stationary target
with initial conditions shown in Table I. The communication
topology G1 between interceptors is shown in Fig. 4. The com-
munication topology G1 is (2, 2)-robust according to Definition
1. During the engagement, Interceptor 3 is destroyed by the
defense system of the target at 3 s.

A. Guidance Performance Analysis for RCGL

The parameters of robust guidance law are chosen as
τ = 0.05 s, Ns = 3 and k1 = · · · = k5 = 3.5. The simulation
results performed with RCGL are shown in Fig. 5. As it is
shown, when Interceptor 3 is intercepted at 3 s, a3 becomes
0 m/s2 and the updating of t̂go,3 stops. From Figs. 5(b) and
5(c), we can see that time-to-go estimates of normal intercep-
tors still reach an agreement after Interceptor 3 is intercepted;
the RCGL achieves simultaneous arrivals by reshaping the
trajectories of interceptors. In Fig. 5(d), we can see that there
are some oscillations in the acceleration commands between
3 s and 6 s, which are caused by the local filtering actions
of RCGL. The range of acceleration commands of normal
interceptors are −92.3 m/s2 ≤ ai ≤ 54.3 m/s2. In Fig.

6, we can observe that, before time-varying navigation gains
achieve consensus, the normal interceptors with larger time-
to-go estimates have larger time-varying navigation gains and
the normal interceptors with smaller time-to-go estimates have
smaller time-varying navigation gains. Then the time-varying
navigation gains Ns

(
1 + ki

∑
j∈Ri(tk) wij(tk)

(
t̂go,i(tk) −

t̂go,j(tk)
))

converge to a constant after 15 s, and the RCGL
becomes PN with a navigation gain Ns = 3. The impact times
Ti and initial time-to-go estimates t̂go,i(t0) are listed in the
Table II. The impact times of normal interceptors are about
33.4 s and the dispersion of impact times is about 0.09 s.
The RCGL reduces the impact time dispersion and achieves
a simultaneous arrival. Note that the impact times Ti of nor-
mal interceptors are located within

[
min{t̂go,i(t0),∀i ∈ N} ,

max{t̂go,i(t0),∀i ∈ N}
]
, which can be seen as a safety

condition.

B. Comparison with other cooperative guidance law which
has a fault diagnosis procedure

For the sake of guidance performance comparisons, a coop-
erative guidance law without local filtering algorithm is chosen
as

ai(t) = Ns

(
1 + ki

∑
j∈Vi

w̄ij
(
t̂go,i(tk) − t̂go,j(tk)

))
Viλ̇i,

(7)

where,

w̄ij(tk) =


αij∑
j∈Vi αij

, ∀j ∈ Vi,

0, otherwise.

Each interceptor is integrated with a fault diagnosis procedure
which can detect the faulty interceptor and reorganize the
communication between normal interceptors.

All parameters are chosen to be the same as that of Section
V-A. Suppose that the fault diagnosis procedure needs 8 s
to detect the fault and reorganize communications between
normal interceptors (i.e., the fault diagnosis procedure ac-
complishes at 11 s). The simulation results in Fig. 7 show
that guidance law (7) can achieve the simultaneous arrival by
adding a fault diagnosis procedure. However, the trajectories
of t̂go,i and ai are strong influenced by the misbehaviors of
Interceptor 3 during 3 s to 11 s. In Fig. 7(b), the time-to-go
estimate of Interceptor 3 becomes a leader, and all time-to-go
estimates of normal interceptors try to follow the yellow line
(during 3 s to 11 s). As depicted in Figs. 7(c) and 7(d), the
accumulated errors in the time-to-go estimates of normal inter-
ceptors cause high acceleration commands ai and hence distort
engagement trajectories. The range of acceleration commands
of normal interceptors are −92.3 m/s2 ≤ ai ≤ 69.87 m/s2.
The control costs

∫ Ti
t0
|ai| dt of two guidance laws are shown

in Fig. 8. The guidance law (7) use more control efforts than
RCGL, since the normal interceptors take detours before fault
diagnosis procedure accomplishes. The impact times Ti and
initial time-to-go estimates t̂go,i(t0) are listed in the Table
III. Note that the impact times of interceptors are about 38.4
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TABLE I
ENGAGEMENT SCENARIO FOR 5 INTERCEPTORS

Parameters Interceptor 1 Interceptor 2 Interceptor 3 Interceptor 4 Interceptor 5

Initial range-to-go(km) 7 7.5 7 10 8

Initial position(km) (−6.06,−3.5) (−7.05,−2.57) (−7, 0) (−9.4,−3.42) (−7.88, 1.39)
Initial heading error(deg) −20 10 −15 15 15

Velocity(m/s) 240 225 220 325 240

Target position (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
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Fig. 5. Simulation results of RCGL. (a) Range-to-go ri, ∀i = 1, · · · , 5; (b) Time-to-go estimates t̂go,i, ∀i = 1, · · · , 5; (c) Trajectories of interceptors; (d)
Acceleration commands ai, ∀i = 1, · · · , 5.
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Fig. 6. Time-varying navigation gains Ns

(
1 + ki

∑
j∈Ri(tk) wij(tk)(

t̂go,i(tk)− t̂go,j(tk)
))

, ∀i = 1, · · · , 5.

s, which is larger than max{t̂go,i(t0),∀i ∈ N}. In fact, the
impact time of the normal interceptor under guidance law (7)
is related to the time of fault diagnosis; if the time of fault
diagnosis is longer, the impact time will be delayed. If the fault
diagnosis fails, the guidance law (7) can not even guarantee

TABLE II
IMPACT TIME OF NORMAL INTERCEPTORS UNDER RCGL

Interceptor 1 Interceptor 2 Interceptor 4 Interceptor 5

Initial time-to-go(s) 29.49 33.43 30.96 33.54

Impact time(s) 33.42 33.35 33.44 33.38

Impact time dispersion(s) 0.09

normal interceptors reaching the target.
The above simulation results demonstrate that RCGL has

better performances when faults happen during the engage-
ment. The simultaneous arrival can be achieved without any
additional fault diagnosis procedure, which enhances the reli-
ability of the cooperative guidance.

VI. CONCLUSIONS

This brief considers a new robust cooperative simultaneous
arrival problem. A distributed cooperative guidance law RCGL
is proposed based on discrete-time communications. By virtue
of a novel local filtering algorithm, the RCGL can achieve a
simultaneous arrival between normal interceptors without the
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Fig. 7. Simulation results of cooperative guidance law (7) with a fault diagnosis procedure. (a) Range-to-go ri, ∀i = 1, · · · , 5; (b) Time-to-go estimates
t̂go,i, ∀i = 1, · · · , 5; (c) Acceleration commands ai, ∀i = 1, · · · , 5; (d) Trajectories of interceptors.
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Fig. 8. Control cost of two guidance laws. (a) RCGL; (b) Cooperative guidance law (7) with fault detection procedure.

TABLE III
IMPACT TIME OF NORMAL INTERCEPTORS UNDER GUIDANCE LAW (7)

WITH A FAULT DIAGNOSIS PROCEDURE

Interceptor 1 Interceptor 2 Interceptor 4 Interceptor 5

Initial time-to-go(s) 29.49 33.43 30.96 33.54

Impact time(s) 38.54 38.41 38.42 38.42

Impact time dispersion(s) 0.13

knowledge of faulty interceptors (or any fault diagnosis pro-
cedure). Furthermore, the impact times of normal interceptors
are upper bounded by the maximum initial time-to-go estimate
of normal interceptors, regardless the network connections.
Compared to the existing cooperative guidance laws, RCGL
is fully distributed and requires no additional information;
thus it reduces the communication burden in practice im-
plementations. The comparison of simulation results shows

that the RCGL can enhance the reliability of the cooperative
guidance. Future research may include extensions to the case
with manoeuvrable targets.

APPENDIX
PROOF OF THEOREM 2

Theorem 1 shows that {M(tk)} is nonincreasing and
{m(tk)} is nondecreasing, respectively. Since every
bounded monotone sequence of real numbers has a
limit, limk→∞M(tk) and limk→∞m(tk) exist. Define
limk→∞M(tk) = AM and limk→∞m(tk) = Am, we will
show AM = Am by seeking a contradiction.

Suppose that AM 6= Am, we can define ε0 = AM−Am
2 .

For any εi ∈ R, we define TM (tk, εi) = {i ∈ V : T̂i(tk) >
AM − εi} and Tm(tk, εi) = {i ∈ V : T̂i(tk) < Am+ εi}. Note
that TM (tk, εi) contains normal and faulty interceptors that
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have T̂i(tk) larger than AM − εi, Tm(tk, εi) contains normal
and faulty interceptors that have T̂i(tk) smaller than Am + εi.

Define a positive constant ε < min{ε0, αN

1−αN ε0}, where
α ∈ (0, 1) is a constant to be defined latter. Define tkε as the
time-step such that M(tkε) < AM + ε and m(tkε) > Am− ε,
∀tk > tkε ; the existence of tkε is guaranteed by the conver-
gence of {M(tk)} and {m(tk)}. It is obvious that TM (tkε , ε0)
and Tm(tkε , ε0) are nonempty and TM (tkε , ε0)∩Tm(tkε , ε0) =
∅. Note that communication graph G is (F + 1, F + 1) robust,
and the number of faulty interceptors is upper bounded by F ;
if there are normal interceptors in TM (tkε , ε0) and Tm(tkε , ε0)
(i.e., N∩TM (tkε , ε0) 6= ∅ and N∩Tm(tkε , ε0) 6= ∅), there is at
least one of these normal interceptors that has at least F+1 in-
neighbors outside of its set. Note that N∩TM (tkε , ε0) 6= ∅ and
N ∩Tm(tkε , ε0) 6= ∅ are true. Otherwise, we have t̂go,i(tkε) ≥
AM+Am

2 , ∀i ∈ N or t̂go,i(tkε) ≤ AM+Am
2 , ∀i ∈ N , which

contradicts the fact that {M(tk)} and {m(tk)} monotonously
converge to AM and Am respectively. Without loss of gener-
ality, suppose that the normal interceptor i ∈ TM (tkε , ε0)∩N
has at least F + 1 in-neighbors outside of TM (tkε , ε0). Then,
we have T̂j(tkε) ≤ AM − ε0, ∀j ∈ Vi ∩ {VTM (tkε , ε0), where
{VTM (tkε , ε0) denotes the relative complement of TM (tkε , ε0)
with respect to V . Since normal interceptor i removes at
most F in-neighbors which are in {VTM (tkε , ε0), at least one
interceptor belongs to Vi ∩ {VTM (tkε , ε0) will be retained in
Ri(tkε). Assume that none of σi, ∀i ∈ N reaches zero before
normal interceptors reach the target (i.e, there exists a positive
constant Km, such that Ki > Km). Together with (6), we
have that the impact time estimate of the normal interceptor i
at time tkε+1 has the following property

T̂i(tkε+1) ≤ (1− Km

N
)M(tkε+1) +

Km

N
(AM − ε0)

≤ AM − αε0 + (1− α)ε ≤ AM − ε1, (8)

where ε1 = αε0 − (1 − α)ε and α = Km
N . Since 0 < Km <

Ki < 1, we have α ∈ (0, 1) and ε1 < ε0. To get (8), we
have used the fact that wij(·) ≥ 1

N . Note that for any normal
interceptor j /∈ TM (tkε , ε0), we still have T̂j(tkε+1) ≤ AM −
ε1; since such a interceptor j will use its own impact time
estimate T̂j(tkε) at tkε+1. Similarly, if a normal interceptor
p ∈ Tm(tkε , ε0) has at least F + 1 in-neighbors outside of
Tm(tkε , ε0), we can obtain

T̂p(tkε+1) ≥ Am + αε0 − (1− α)ε ≥ Am + ε1.

Furthermore, for any normal interceptor q /∈ Tm(tkε , ε0), we
still have T̂q(tkε+1) ≥ Am + ε1.

Based on the above analysis, we know that at least one of
following statement is true if both N ∩ TM (tkε , ε0) 6= ∅ and
N ∩ Tm(tkε , ε0) 6= ∅:

1) At least there is one normal interceptor i ∈ TM (tkε , ε0)
whose T̂i(tkε) decreases to AM − ε1 (or below)
at tkε+1. Then, we have ‖TM (tkε+1, ε1) ∩N‖ <
‖TM (tkε , ε0) ∩N‖, where ‖·‖ denotes the cardinality
of a set.

2) At least there is one normal interceptor j ∈ Tm(tkε , ε0)
whose T̂j(tkε) increases to Am + ε1 (or above)
at tkε+1. Then, we have ‖Tm(tkε+1, ε1) ∩N‖ <
‖Tm(tkε , ε0) ∩N‖.

Since ε1 < ε0, we have TM (tkε+1, ε1) ∩ Tm(tkε+1, ε1) = ∅.
Define εj recursively as εj = αεj−1 − (1− α)ε, ∀j ≥ 1, one
can obtain εj < εj−1 and TM (tkε+j , εj)∩Tm(tkε+j , εj) = ∅. If
there are still normal nodes in TM (tkε+j , εj)∪ Tm(tkε+j , εj),
we can repeat the above analysis at tkε+j+1, then we have
either ‖TM (tkε+j+1, εj+1) ∩N‖ < ‖TM (tkε+j , εj) ∩N‖, or
‖Tm(tkε+j+1, εj+1) ∩N‖ < ‖Tm(tkε+j , εj) ∩N‖, or both.
Subsequently, there exists a time-step tkε+k̄ such that N ∩
TM (tkε+k̄, εk̄) = ∅ or N ∩ TM (tkε+k̄, εk̄) = ∅. Since
‖N ∩ TM (tkε , ε0)‖ + ‖N ∩ Tm(tkε , ε0)‖ ≤ N , we obtain
K̄ < N . For the case N ∩ TM (tkε+k̄, εk̄) = ∅, we can
obtain that the impact time estimates of all normal intercep-
tors satisfy T̂i(tkε+k̄) ≤ AM − εk̄, ∀i ∈ N ; for the case
N ∩Tm(tkε+k̄, εk̄) = ∅, we can obtain that the impact time es-
timates of all normal interceptors satisfy T̂i(tkε+k̄) ≥ Am+εk̄,
∀i ∈ N .

In the following analysis, we will show that εk̄ > 0, which
contradicts the fact that {M(tk)} monotonically converges
to AM (in the first case) or that {m(tk)} monotonically
converges to Am (in the second case). Note that

εk̄ =αεk̄−1 − (1− α)ε

=α2εk̄−2 − α(1− α)ε− (1− α)ε

=αk̄ε0 − (1− αk̄)ε ≥ αN ε0 − (1− αN )ε.

Since ε < αN

1−αN ε0, we have εk̄ > 0, which provides the
contradiction. Thus, we can conclude that AM = Am, the
impact time estimates T̂i, ∀i ∈ N converge to a same value.
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