987 research outputs found

    Inhibitors of thromboxane synthase in human platelets

    Get PDF

    Research on human reproduction and the United Nations

    Get PDF
    No Abstract

    Аналіз роботоздатності редуктора копачів коренезбиральної машини

    Get PDF
    Models and simulations are commonly used to study deep brain stimulation (DBS). Simulated stimulation fields are often defined and visualized by electric field isolevels or volumes of tissue activated (VTA). The aim of the present study was to evaluate the relationship between stimulation field strength as defined by the electric potential V, the electric field E, and the divergence of the electric field ∇(2) V, and neural activation. Axon cable models were developed and coupled to finite-element DBS models in three-dimensional (3-D). Field thresholds ( VT , ET, and ∇(2) VT ) were derived at the location of activation for various stimulation amplitudes (1 to 5 V), pulse widths (30 to 120 μs), and axon diameters (2.0 to 7.5 μm). Results showed that thresholds for VT and ∇(2) VT were highly dependent on the stimulation amplitude while ET were approximately independent of the amplitude for large axons. The activation field strength thresholds presented in this study may be used in future studies to approximate the VTA during model-based investigations of DBS without the need of computational axon models.This work was supported by the European Union's Seventh Framework Programme IMPACT (Grant 305814) and by the Swedish Research Council (Grant 621-2013-6078). Asterisk indicates corresponding author.</p

    Pilot Data on Brain-to-Blood Efflux of B-Amyloid Peptides in Man

    Get PDF
    • Alzheimer’s disease (AD) is the most common cause of dementia and affects nearly 40,000 individuals in Ireland. • The b-amyloid peptide (Ab) plays a key role in the pathogenesis of the AD and the presence of Ab plaques in the brain is diagnostic. •The hypothesis posits that Ab deposition is a critical factor in the disease process and that production and clearance of Ab are key drivers of the disease1. •Flux of Ab from the brain is believed to contribute to the overall level of Ab within in brain2 and antibody mediated brain-to-blood efflux has been observed in animal models3. •Clearance of from the blood is believed to be mainly via the liver, kidney and spleen4. •Data from human studies indicate that the about 6% of the Ab pool present in the cerebrospinal fluid is cleared per hour5. •There are no data available on the magnitude of the cerebral output of Ab peptides in man or the hepatic uptake. •The aim of this work was to investigate if the concentration Ab peptides is different in jugular venous plasma and arterial plasma and so estimate direct values for both brain-to-blood Ab efflux and hepatic clearance in man

    Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood-brain and blood-cerebrospinal fluid barriers.

    Get PDF
    The side chain oxidized oxysterol 24S-hydroxycholesterol (24-OH-chol) is formed almost exclusively in the brain, and there is a continuous passage of this oxysterol through the circulation to the liver. 27-Hydroxycholesterol (27-OH-chol) is produced in most organs and is also taken up by the liver. The 27-OH-chol-24-OH-chol ratio is about 0.1 in the brain and about 2 in the circulation. This ratio was found to be about 0.4 in cerebrospinal fluid (CSF) of asymptomatic patients, consistent with a major contribution from the circulation in the case of 27-OH-chol. In accordance with this, we demonstrated a significant flux of deuterium labeled 27-OH-chol from plasma to the CSF in a healthy volunteer. Patients with a defective blood-brain barrier were found to have markedly increased absolute levels (up to 10-fold) of both 27-OH-chol and 24-OH-chol in CSF, with a ratio between the two sterols reaching up to 2. There was a significant positive correlation between the levels of both oxysterols in CSF and the albuminCSF-albuminplasma ratio. The 27-OH-cholCSF-24-OH-cholCSF ratio was found to be about normal in patients with active multiple sclerosis and significantly increased in patients with meningitis, polyneuropathy, or hemorrhages. Results are discussed in relation to the possible use of 24-OH-cholCSF as a surrogate marker of central nervous system demyelination and/or neuronal death

    Early or deferred initiation of efavirenz during rifampicin‐based TB therapy has no significant effect on CYP3A induction in TB‐HIV infected patients

    Get PDF
    Background and Purpose: In TB‐HIV co‐infection, prompt initiation of TB therapy is recommended but anti‐retroviral treatment (ART) is often delayed due to potential drug–drug interactions between rifampicin and efavirenz. In a longitudinal cohort study, we evaluated the effects of efavirenz/rifampicin co‐treatment and time of ART initiation on CYP3A induction. / Experimental Approach: Treatment‐naïve TB‐HIV co‐infected patients (n = 102) were randomized to efavirenz‐based‐ART after 4 (n = 69) or 8 weeks (n = 33) of commencing rifampicin‐based anti‐TB therapy. HIV patients without TB (n = 94) receiving efavirenz‐based‐ART only were enrolled as control. Plasma 4β‐hydroxycholesterol/cholesterol (4β‐OHC/Chol) ratio, an endogenous biomarker for CYP3A activity, was determined at baseline, at 4 and 16 weeks of ART. / Key Results: In patients treated with efavirenz only, median 4β‐OHC/Chol ratios increased from baseline by 269% and 275% after 4 and 16 weeks of ART, respectively. In TB‐HIV patients, rifampicin only therapy for 4 and 8 weeks increased median 4β‐OHC/Chol ratios from baseline by 378% and 576% respectively. After efavirenz/rifampicin co‐treatment, 4β‐OHC/Chol ratios increased by 560% of baseline (4 weeks) and 456% of baseline (16 weeks). Neither time of ART initiation, sex, genotype nor efavirenz plasma concentration were significant predictors of 4β‐OHC/Chol ratios after 4 weeks of efavirenz/rifampicin co‐treatment. / Conclusion and Implications: Rifampicin induced CYP3A more potently than efavirenz, with maximum induction occurring within the first 4 weeks of rifampicin therapy. We provide pharmacological evidence that early (4 weeks) or deferred (8 weeks) ART initiation during anti‐TB therapy has no significant effect on CYP3A induction

    Primary open-angle glaucoma: association with cholesterol 24S-hydroxylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels

    No full text
    Purpose. Genetics has made significant contributions to the study of glaucoma over the past few decades. Cholesterol-24S-hydroxylase (CYP46A1) is a cholesterol-metabolizing enzyme that is especially expressed in retinal ganglion cells. CYP46A1 and its metabolic product, 24S-hydroxycholesterol, have been linked to neurodegeneration. A single-nucleotide polymorphism (SNP) in the CYP46A1 gene, designated as rs754203 and associated with Alzheimer disease, was evaluated as a genetic risk factor for primary open-angle glaucoma (POAG), as well as plasma 24S-hydroxycholesterol levels. Methods. The frequency of the CYP46*C and CYP46*T alleles was analyzed in 150 patients with POAG and 118 control subjects. Plasma 24S-hydroxycholesterol levels were quantified. Sex, age, alleles, and genotype frequencies between patients with POAG and control subjects were compared by using the {chi}2 and Student's t-tests. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression to assess the relative association between disease and age, sex, and genotypes. Results. The frequency of the TT genotype was significantly higher in patients with POAG than in control subjects (61.3% versus 48.3%, respectively, OR = 1.26; 95% CI = 1.006–1.574, P < 0.05). Plasma 24S-hydroxycholesterol levels did not differ between control subjects and patients with POAG. The ratio of estimated brain weight to liver volume as an estimate of the capacity of the human body to synthesize and metabolize 24S-hydroxycholesterol was found to correlate to plasma 24S-hydroxycholesterol in control subjects and patients with POAG. Conclusions. The rs754203 SNP in CYP46A1 was associated with a risk for POAG. This polymorphism was not associated with changes in plasma 24S-hydroxycholesterol, highlighting that despite its retinal origin, 24S-hydroxycholesterol cannot be used as a biomarker for POAG
    corecore