15 research outputs found

    Cerebrospinal fluid and plasma lipopolysaccharide (LPS) levels in HIV-1 infection and associations with inflammation, blood-brain barrier permeability and neuronal injury

    Get PDF
    HIV infection is associated with increased systemic microbial translocation, neuro-inflammation and occasionally neuronal injury. Whether systemic LPS penetrates into the brain and contributes to neuro-inflammation remain unknown in HIV. Here, we measured plasma and cerebrospinal fluid (CSF) LPS levels along with biomarkers of neuro-inflammation (white blood cell counts and 40 soluble markers) and neurofilament light chain (NfL). Notably, CSF LPS was undetectable in all samples, including three HIV-infected individuals with dementia. Increased plasma LPS, neuro-inflammation, and blood-brain barrier (BBB) dysfunction were found in untreated HIV-infected individuals, but not in healthy or treated HIV-infected individuals. Plasma LPS levels were directly correlated with various markers of inflammation in both plasma and CSF, as well as with degree of BBB permeability but not with CSF NfL in HIV-infected subjects. These results suggest that the magnitude of microbial translocation associates with neuro-inflammation and BBB permeability in HIV without direct penetration into the central nervous system (CNS)

    A toolbox for the longitudinal assessment of healthspan in ageing mice

    Get PDF
    The number of people aged over 65 is expected to double in the next 30 years. For many, living longer will mean spending more years with the burdens of chronic diseases such as Alzheimer’s, cardiovascular disease, and diabetes. Although researchers have made rapid progress in developing geroprotective interventions that target mechanisms of ageing and delay or prevent the onset of multiple concurrent age-related diseases, a lack of standardized techniques to assess healthspan in preclinical murine studies has resulted in reduced reproducibility and slowed progress. To overcome this, major centres in Europe and the USA skilled in healthspan analysis came together to agree upon a toolbox of techniques which can be used to consistently assess the healthspan of mice. Here, we describe the agreed toolbox which contains protocols for echocardiography, novel object recognition, grip strength, rotarod, glucose and insulin tolerance tests, body composition, and energy expenditure. They can be performed longitudinally in the same mouse over a period of 4-6 weeks to test how candidate geroprotectors affect cardiac, cognitive, neuromuscular and metabolic health

    A toolbox for the longitudinal assessment of healthspan in aging mice

    Get PDF
    The number of people aged over 65 is expected to double in the next 30 years. For many, living longer will mean spending more years with the burdens of chronic diseases such as Alzheimer’s disease, cardiovascular disease, and diabetes. Although researchers have made rapid progress in developing geroprotective interventions that target mechanisms of aging and delay or prevent the onset of multiple concurrent age-related diseases, a lack of standardized techniques to assess healthspan in preclinical murine studies has resulted in reduced reproducibility and slow progress. To overcome this, major centers in Europe and the United States skilled in healthspan analysis came together to agree on a toolbox of techniques that can be used to consistently assess the healthspan of mice. Here, we describe the agreed toolbox, which contains protocols for echocardiography, novel object recognition, grip strength, rotarod, glucose tolerance test (GTT) and insulin tolerance test (ITT), body composition, and energy expenditure. The protocols can be performed longitudinally in the same mouse over a period of 4–6 weeks to test how candidate geroprotectors affect cardiac, cognitive, neuromuscular, and metabolic health

    Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms

    No full text
    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB(1)) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 ÎĽM) or authentic hydroxytyrosol (HT, 50 ÎĽM) for 24 h. None of the other major elements of the ECS (i.e., CB(2); GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB(1) expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB(1) expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB(1) mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB(1) gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may provide a new therapeutic avenue for treatment and/or prevention of colon cancer

    A toolbox for the longitudinal assessment of healthspan in aging mice

    No full text
    The number of people aged over 65 is expected to double in the next 30 years. For many, living longer will mean spending more years with the burdens of chronic diseases such as Alzheimer’s disease, cardiovascular disease, and diabetes. Although researchers have made rapid progress in developing geroprotective interventions that target mechanisms of aging and delay or prevent the onset of multiple concurrent age-related diseases, a lack of standardized techniques to assess healthspan in preclinical murine studies has resulted in reduced reproducibility and slow progress. To overcome this, major centers in Europe and the United States skilled in healthspan analysis came together to agree on a toolbox of techniques that can be used to consistently assess the healthspan of mice. Here, we describe the agreed toolbox, which contains protocols for echocardiography, novel object recognition, grip strength, rotarod, glucose tolerance test (GTT) and insulin tolerance test (ITT), body composition, and energy expenditure. The protocols can be performed longitudinally in the same mouse over a period of 4–6 weeks to test how candidate geroprotectors affect cardiac, cognitive, neuromuscular, and metabolic health

    Elevated Cerebrospinal Fluid Anti-CD4 Autoantibody Levels in HIV Associate with Neuroinflammation.

    Get PDF
    The mechanisms of persistent central nervous system (CNS) inflammation in people with HIV (PWH) despite effective antiretroviral therapy (ART) are not fully understood. We have recently shown that plasma anti-CD4 IgGs contribute to poor CD4+ T cell recovery during suppressive ART via antibody-mediated cytotoxicity (ADCC) against CD4+ T cells, and that plasma anti-CD4 IgG levels are associated with worse cognitive performance and specific brain area atrophy. However, the role of anti-CD4 IgGs in neuroinflammation remains unclear. In the current study, plasma and cerebrospinal fluid (CSF) samples from 31 ART-naive and 26 treated, virologically suppressed PWH, along with 16 HIV-seronegative controls, were evaluated for CSF levels of anti-CD4 IgG, white blood cell (WBC) counts, soluble biomarkers of neuroinflammation, and neurofilament light chain (NfL). We found that 37% of the PWH exhibited elevated CSF anti-CD4 IgG levels, but few or none of the PWH were observed with elevated CSF anti-CD4 IgM, anti-CD8 IgG, or anti-double-strand DNA IgG. CSF anti-CD4 IgG levels in PWH were directly correlated with neuroinflammation (WBC counts, neopterin, and markers of myeloid cell activation), but not with CSF NfL levels. Using cells from one immune nonresponder to ART, we generated a pathogenic anti-CD4 monoclonal IgG (JF19) presenting with ADCC activity; JF19 induced the production of soluble CD14 (sCD14) and interleukin-8 (IL-8) in human primary monocyte-derived macrophages via CD4 binding in vitro. This study demonstrates for the first time that elevated CSF anti-CD4 IgG levels present in a subgroup of PWH which may play a role in neuroinflammation in HIV. IMPORTANCE This study reports that an autoantibody presents in the CNS of HIV patients and that its levels in the CSF correlate with some markers of neuroinflammation

    Loss of miR-451a enhances SPARC production during myogenesis.

    No full text
    MicroRNAs (miRNAs) are small noncoding RNAs that critically regulate gene expression. Their abundance and function have been linked to a range of physiologic and pathologic processes. In aged monkey muscle, miR-451a and miR-144-3p were far more abundant than in young monkey muscle. This observation led us to hypothesize that miR-451a and miR-144-3p may influence muscle homeostasis. To test if these conserved microRNAs were implicated in myogenesis, we investigated their function in the mouse myoblast line C2C12. The levels of both microRNAs declined with myogenesis; however, only overexpression of miR-451a, but not miR-144-3p, robustly impeded C2C12 differentiation, suggesting an inhibitory role for miR-451a in myogenesis. Further investigation of the regulatory influence of miR-451a identified as one of the major targets Sparc mRNA, which encodes a secreted protein acidic and rich in cysteine (SPARC) that functions in wound healing and cellular differentiation. In mouse myoblasts, miR-451a suppressed Sparc mRNA translation. Together, our findings indicate that miR-451a is downregulated in differentiated myoblasts and suggest that it decreases C2C12 differentiation at least in part by suppressing SPARC biosynthesis

    Declining antibody levels to Trypanosoma cruzi correlate with polymerase chain reaction positivity and electrocardiographic changes in a retrospective cohort of untreated Brazilian blood donors.

    No full text
    BackgroundAlthough infection with Trypanosoma cruzi is thought to be lifelong, less than half of those infected develop cardiomyopathy, suggesting greater parasite control or even clearance. Antibody levels appear to correlate with T. cruzi (antigen) load. We test the association between a downwards antibody trajectory, PCR positivity and ECG alterations in untreated individuals with Chagas disease.Methodology/principal findingsThis is a retrospective cohort of T. cruzi seropositive blood donors. Paired blood samples (index donation and follow-up) were tested using the VITROS Immunodiagnostic Products Anti-T.cruzi (Chagas) assay (Ortho Clinical Diagnostics, Raritan NJ) and PCR performed on the follow-up sample. A 12-lead resting ECG was performed. Significant antibody decline was defined as a reduction of > 1 signal-to-cutoff (S/CO) unit on the VITROS assay. Follow-up S/CO of Conclusions/significanceLow and falling antibody levels define a phenotype of possible spontaneous parasite clearance
    corecore