10 research outputs found

    Mitochondrial CYP2E1 is sufficient to mediate oxidative stress and cytotoxicity induced by ethanol and acetaminophen.

    No full text
    International audienceSeveral cytochromes P450 (CYPs) are not only located in the endoplasmic reticulum but also within mitochondria. One such CYP is CYP2E1 which metabolizes numerous substrates and generates significant amount of reactive oxygen species. The presence of CYP2E1 in these organelles raises questions regarding its physiological role but also its possible deleterious effects in the context of drug-induced cytotoxicity. The aim of our study was to investigate the role of mitochondrial CYP2E1 in the toxicity of acetaminophen and ethanol. Hence the effects of these two compounds in cells expressing CYP2E1 in mitochondria only, or in both endoplasmic reticulum and mitochondria, were compared to those observed in mock-transfected cells. Our results indicated that when acetaminophen or ethanol were used as CYP2E1 substrates, the exclusive localization of CYP2E1 within mitochondria was sufficient to induce reactive oxygen species overproduction, depletion of reduced glutathione, increased expression of mitochondrial Hsp70, mitochondrial dysfunction and cytotoxicity. Importantly, these harmful events happened despite lower cellular level and activity of CYP2E1 when compared to cells expressing CYP2E1 in both endoplasmic reticulum and mitochondria, and this was particularly obvious with acetaminophen. Taken together, these data suggest that mitochondrial CYP2E1 could play a major role in drug-induced oxidative stress and cell demise

    Toxicity of alpidem, a peripheral benzodiazepine receptor ligand, but not zolpidem, in rat hepatocytes: role of mitochondrial permeability transition and metabolic activation.

    No full text
    International audienceWhereas alpidem is hepatotoxic, zolpidem is not. Despite closely related chemical structures, alpidem, but not zolpidem, is a peripheral benzodiazepine receptor (PBR) ligand, and is also more lipophilic than zolpidem. We compared their effects in isolated rat liver mitochondria and rat hepatocytes. Zolpidem did not affect calcium-induced mitochondrial permeability transition (MPT) in mitochondria, caused little glutathione depletion in hepatocytes, and was not toxic, even at 500 microM. At 250 to 500 microM, alpidem prevented calcium-induced MPT in isolated mitochondria, but caused severe glutathione depletion in hepatocytes that was increased by 3-methylcholanthrene, a cytochrome P4501A inducer, and decreased by cystine, a glutathione precursor. Although cell calcium increased, mitochondrial cytochrome c did not translocate to the cytosol and cells died of necrosis. Cell death was prevented by cystine, but not cyclosporin A, an MPT inhibitor. At low concentrations (25-50 microM), in contrast, alpidem accelerated calcium-induced MPT in mitochondria. It did not deplete glutathione in hepatocytes, but nevertheless caused some cell death that was prevented by cyclosporin A, but not by cystine. Alpidem (10 microM) also increased the toxicity of tumor necrosis factor-alpha (1 ng/ml) in hepatocytes. In conclusion, low concentrations of alpidem increase both calcium-induced MPT in mitochondria, and TNF-alpha toxicity in cells, like other PBR ligands. Like other lipophilic protonatable amines, however, alpidem inhibits calcium-induced MPT at high concentrations. At these high concentrations, toxicity involves cytochrome P4501A-mediated metabolic activation, glutathione depletion, and increased cell calcium, without MPT involvement. In contrast, zolpidem has no mitochondrial effects, causes little glutathione depletion, and is not toxic

    Tacrine inhibits topoisomerases and DNA synthesis to cause mitochondrial DNA depletion and apoptosis in mouse liver

    No full text
    International audienceAfter several weeks of treatment, levels of alanine aminotransferase (ALT) increase in 50% of patients treated with tacrine for Alzheimer's disease. We looked for progressive effects on DNA to explain delayed toxicity. We first studied the in vitro effects of tacrine on DNA replication and topoisomerase-mediated DNA relaxation. We then treated mice with doses of tacrine reproducing the human daily dose on a body area basis and studied the effects of tacrine administration for up to 28 days on hepatic DNA, mitochondrial function, and cell death. In vitro, tacrine impaired DNA polymerase gamma-mediated DNA replication and also poisoned topoisomerases I and II to increase the relaxation of a supercoiled plasmid. In vivo, administration of tacrine markedly decreased incorporation of [(3)H]thymidine into mitochondrial DNA (mtDNA), progressively and severely depleted mtDNA, and partly unwound supercoiled mtDNA into circular mtDNA. Incorporation of [(3)H]thymidine into nuclear DNA (nDNA) was barely decreased, and nDNA levels were unchanged. After 12 to 28 days of treatment, administration of tacrine increased p53, Bax, mitochondrial permeability transition, cytosolic cytochrome c, and caspase-3 activity and triggered hepatocyte apoptosis and/or necrosis. In conclusion, the intercalating drug tacrine poisons topoisomerases and impairs DNA synthesis. Tacrine has been shown to accumulate within mitochondria, and it particularly targets mtDNA. After several weeks of treatment, the combination of severe mtDNA depletion and a genotoxic stress enhancing p53, Bax, and permeability transition trigger hepatocyte necrosis and/or apoptosis

    Polypharmacy Cut-Off for Gait and Cognitive Impairments

    No full text
    Antoine Langeard and Kristell Pothier have contributed equally to this work.International audienceBACKGROUND:Polypharmacy is a well-established risk factor for falls, and these are one of the major health problems that affect the quality of life as people age. However, the risk of mobility and cognitive impairments consecutive to polypharmacy has been little addressed, despite the association between these adverse outcomes and falls. Moreover, the rare polypharmacy cut-offs were all but one arbitrarily determined.OBJECTIVE:Studying relationships between polypharmacy and both mobility and cognitive impairments, and statistically determining a cut-off point in the number of medicinal molecule beyond which polypharmacy has deleterious consequences with respect to mobility and cognitive impairment.METHODS:We enrolled 113 community-dwelling adults aged 55 years and older with a fall history, with or without injury, in the previous year. We carefully collected information about daily medicinal molecules taken. We assessed basic mobility and global cognition with the Time-Up-and-Go and the Montreal Cognitive Assessment (MoCA) test, respectively (clinicaltrials.gov NCT02292316).RESULTS:Timed-Up and Go test and MoCA scores were both significantly correlated with the number of molecule, used. Receiver Operating Characteristic curves indicate, with high prediction (p < 0.002), that daily consumption of five or more molecules is associated with risk for both impaired mobility and global cognition. These relationships were independent of the number of comorbidities and of the pharmacological class.CONCLUSION:Community-dwelling adults aged 55 years and older who take five or more daily medicinal molecules are at high risk for both mobility and cognitive impairments. Physicians and patients should be aware of these new findings, especially when there are multiple prescribers involved in the care of the patient

    Evidence for different expression profiles for c-Met, EGFR, PTEN and the mTOR pathway in low and high grade endometrial carcinomas in a cohort of consecutive women. Occurrence of PIK3CA and K-Ras mutations and microsatellite instability

    No full text
    Molecular and genetic investigations in endometrial carcinogenesis may have prognostic and therapeutic implications. We studied the expression of EGFR, c-Met, PTEN and the mTOR signalling pathway (phospho-AKT/phospho-mTOR/phospho-RPS6) in 69 consecutive tumours and 16 tissue microarrays. We also analysed PIK3CA, K-Ras mutations and microsatellite instability (MSI). We distinguished two groups: group 1 (grade 1 and 2 endometrioid cancers) and group 2 (grade 3 endometrioid and type II clear and serous cell cancers). We hypothesised that these histological groups might have different features. We found that a) survival was higher in group 1 with less aggressive tumours (P<0.03); b) EGFR (P=0.01), PTEN and the AKT/mTOR/RPS6 signalling pathway were increased in group 1 versus group 2 (P=0.05 for phospho-mTOR); c) conversely, cMet was higher (P<0.03) in group 2 than in group 1; d) In group 1, EGFR was correlated with c-Met, phosphomTOR, phospho-RPS6 and the global activity of the phospho-AKT/phospho-mTOR/phospho-RPS6 pathway. In group 2, EGFR was correlated only with the phosphoAKT/phospho-mTOR/phospho-RPS6 pathway, whereas c-Met was correlated with PTEN; e) survival was higher for tumours with more than 50% PTEN-positive cells; f) K-RAS and PIK3CA mutations occurred in 10-12% of the available tumours and MSI in 40.4%, with a loss of MLH1 and PMS2 expression. Our results for endometrial cancers provide the first evidence for a difference in status between groups 1 and 2. The patients may benefit from different targeted treatments, antiEGFR agents and rapamycin derivatives (anti-mTOR) for group 1 and an anti c-MET/ligand complex for group 2

    High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon

    No full text
    We have previously shown that high-protein (HP) diet ingestion causes marked changes in the luminal environment of the colonic epithelium. This study aimed to evaluate the impact of such modifications on small intestinal and colonic mucosa, two segments with different transit time and physiological functions. Rats were fed with either normal protein (NP; 14% protein) or HP (53% protein) isocaloric diet for 2 weeks, and parameters related to intestinal mucous-secreting cells and to several innate/adaptive immune characteristics (myeloperoxidase activity, cytokine and epithelial TLR expression, proportion of immune cells in gut-associated lymphoid tissues) were measured in the ileum and colon. In ileum from HP animals, we observed hyperplasia of mucus-producing cells concomitant with an increased expression of Muc2 at both gene and protein levels, reduction of mucosal myeloperoxidase activity, down-regulation of TIr4 gene expression in enterocytes and down-regulation of mucosal Th cytokines associated with CD4+ lymphocyte reduction in mesenteric lymph nodes. These changes coincided with an increased amount of acetate in the ileal luminal content. In colon, HP diet ingestion resulted in a lower number of goblet cells at the epithelial surface but increased goblet cell number in colonic crypts together with an increased Muc3 and a slight reduction of 11-6 gene expression. Our data suggest that HP diet modifies the goblet cell distribution in colon and, in ileum, increases goblet cell activity and decreases parameters related to basal gut inflammatory status. The impact of HP diet on intestinal mucosa in terms of beneficial or deleterious effects is discussed
    corecore