13 research outputs found

    Structural and functional analysis of the three MIF4G domains of nonsense-mediated decay factor UPF2.

    No full text
    Nonsense-mediated decay (NMD) is a eukaryotic quality control pathway, involving conserved proteins UPF1, UPF2 and UPF3b, which detects and degrades mRNAs with premature stop codons. Human UPF2 comprises three tandem MIF4G domains and a C-terminal UPF1 binding region. MIF4G-3 binds UPF3b, but the specific functions of MIF4G-1 and MIF4G-2 are unknown. Crystal structures show that both MIF4G-1 and MIF4G-2 contain N-terminal capping helices essential for stabilization of the 10-helix MIF4G core and that MIF4G-2 interacts with MIF4G-3, forming a rigid assembly. The UPF2/UPF3b/SMG1 complex is thought to activate the kinase SMG1 to phosphorylate UPF1 in vivo. We identify MIF4G-3 as the binding site and in vitro substrate of SMG1 kinase and show that a ternary UPF2 MIF4G-3/UPF3b/SMG1 complex can form in vitro. Whereas in vivo complementation assays show that MIF4G-1 and MIF4G-2 are essential for NMD, tethering assays reveal that UPF2 truncated to only MIF4G-3 and the UPF1-binding region can still partially accomplish NMD. Thus UPF2 MIF4G-1 and MIF4G-2 appear to have a crucial scaffolding role, while MIF4G-3 is the key module required for triggering NMD

    Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications.

    No full text
    International audienceBACKGROUND:The use of nanomaterials is constantly increasing in electronics, cosmetics, food additives, and is emerging in advanced biomedical applications such as theranostics, bio-imaging and therapeutics. However their safety raises concerns and requires appropriate methods to analyze their fate in vivo.SCOPE OF REVIEW:In this review, we describe the current knowledge about the toxicity of labile metal (ZnO, CuO and Ag) nanoparticles (NPs) both at the organism and cellular levels, and describe the pathways that are triggered to maintain cellular homeostasis. We also describe advanced elemental imaging approaches to analyze intracellular NP fate. Finally, we open the discussion by presenting recent developments in terms of synthesis and applications of Ag and CuO NPs.MAJOR CONCLUSIONS:Labile metal nanoparticles (MeNPs) release metal ions that trigger a cellular response involving biomolecules binding to the ions followed by regulation of the redox balance. In addition, specific mechanisms are set up by the cell in response to physiological ions such as Cu(I) and Zn(II). Among all types of NPs, labile MeNPs induce the strongest inflammatory responses which are most probably due to the combined effects of the NPs and of its released ions. Interestingly, recent developments in imaging technologies enable the intracellular visualization of both the NPs and their ions and promise new insights into nanoparticle fate and toxicity

    Therapeutic peptides: targeting the mitochondrion to modulate apoptosis

    Get PDF
    For many years, medical drug discovery has extensively exploited peptides as lead compounds. Currently, novel structures of therapeutic peptides are derived from active pre-existing peptides or from high-throughput screening, and optimized following a rational drug design approach. Molecules of interest may prove their ability to influence the disease outcome in animal models and must respond to a set of criteria based on toxicity studies, ease of administration, the cost of their synthesis, and logistic for clinical use to validate it as a good candidate in a therapeutic perspective. This applies to the potential use of peptides to target one central intracellular organelle, the mitochondrion, to modulate (i.e. activate or prevent) apoptosis. Putative mitochondrial protein targets and the strategies already elaborated to correct the defects linked to these proteins (overexpression, inactivation, mutation…, etc.) are described, and recent advances that led or may lead to the conception of therapeutic peptides via a specific action on these mitochondrial targets in the future are discussed

    Insights into polythiol-assisted AgNP dissolution induced by bio-relevant molecules

    No full text
    International audienceThe widespread use of silver nanoparticles (AgNPs) as biocides in consumer products raises concerns about their toxicity to humans and their environmental impact. The biocidal activity is mediated by the release of Ag(i). However, this metal ion is universally toxic to living organisms. For instance, Ag(i) tightly binds to thiol functional groups that are abundant and essential to any cell type. The first intracellular source of thiol, glutathione, is crucial for the control of the redox balance of cells. Dissolution studies using monothiol-containing biomolecules such as glutathione or cysteine provided controversial results, while the impact of polythiol molecules on AgNP behavior remains unexplored. In order to gain insights into polythiol-assisted AgNP dissolution at constant and equal thiol:Ag molarity, we studied the impact of glutathione, phytochelatins with 2, 3 or 6 thiols, and copper chaperone Atx1 and its metal binding site mimic P-2, both containing 2 pre-oriented thiols to chelate Cu(i). The AgNP behavior was monitored by various complementary physicochemical approaches. We demonstrated unambiguously that, under aerobic conditions, these molecules favor AgNP dissolution into Ag(i) ions with a rate that increases with the number of thiols per molecule as well as with their pre-orientation. We also observed that AgNP dissolution into Ag(i) soluble species occurs progressively for the whole AgNP population. This work highlights how transformations of AgNPs are triggered by biomolecules and lays the basis for a deeper understanding of their fate in biological/environmental systems

    A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation

    No full text
    Mammalian nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that degrades mRNAs containing premature translation termination codons. Phosphorylation of the essential NMD effector UPF1 by the phosphoinositide-3-kinase-like kinase (PIKK) SMG-1 is a key step in NMD and occurs when SMG-1, its two regulatory factors SMG-8 and SMG-9, and UPF1 form a complex at a terminating ribosome. Electron cryo-microscopy of the SMG-1-8-9-UPF1 complex shows the head and arm architecture characteristic of PIKKs and reveals different states of UPF1 docking. UPF1 is recruited to the SMG-1 kinase domain and C-terminal insertion domain, inducing an opening of the head domain that provides access to the active site. SMG-8 and SMG-9 interact with the SMG-1 C-insertion and promote high-affinity UPF1 binding to SMG-1-8-9, as well as decelerated SMG-1 kinase activity and enhanced stringency of phosphorylation site selection. The presence of UPF2 destabilizes the SMG-1-8-9-UPF1 complex leading to substrate release. Our results suggest an intricate molecular network of SMG-8, SMG-9 and the SMG-1 C-insertion domain that governs UPF1 substrate recruitment and phosphorylation by SMG-1 kinase, an event that is central to trigger mRNA decay

    XAS Investigation of Silver(I) Coordination in Copper(I) Biological Binding Sites

    No full text
    International audienceSilver(I) is an unphysiological ion that, as the physiological copper(I) ion, shows high binding affinity for thiolate ligands; its toxicity has been proposed to be due to its capability to replace Cu(I) in the thiolate binding sites of proteins involved in copper homeostasis. Nevertheless, the nature of the Ag(I)-thiolate complexes formed within cells is poorly understood, and the details of Ag(I) coordination in such complexes in physiologically relevant conditions are mostly unknown. By making use of X-ray absorption spectroscopy (XAS), we characterized the Ag(I) binding sites in proteins related to copper homeostasis, such as the chaperone Atox1 and metallothioneins (MTs), as well as in bioinspired thiolate Cu(I) chelators mimicking these proteins, in solution and at physiological pH. Different Ag(I) coordination environments were revealed: the Ag-S bond length was found to correlate to the Ag(I) coordination number, with characteristic values of 2.40 and 2.49 Å in AgS2 and AgS3 sites, respectively, comparable to the values reported for crystalline Ag(I)-thiolate compounds. The bioinspired Cu(I) chelator L(1) is proven to promote the unusual trigonal AgS3 coordination and, therefore, can serve as a reference compound for this environment. In the Cu(I)-chaperone Atox1, Ag(I) binds in digonal coordination to the two Cys residues of the Cu(I) binding loop, with the AgS2 characteristic bond length of 2.40 ± 0.01 Å. In the multinuclear Ag(I) clusters of rabbit and yeast metallothionein, the average Ag-S bond lengths are 2.48 ± 0.01 Å and 2.47 ± 0.01 Å, respectively, both indicative of the predominance of trigonal AgS3 sites. This work lends insight into the coordination chemistry of silver in its most probable intracellular targets and might help in elucidating the mechanistic aspects of Ag(I) toxicity
    corecore