60 research outputs found

    Protein Clearance Mechanisms of Alpha-Synuclein and Amyloid-Beta in Lewy Body Disorders

    Get PDF
    Protein clearance is critical for the maintenance of the integrity of neuronal cells, and there is accumulating evidence that in most—if not all—neurodegenerative disorders, impaired protein clearance fundamentally contributes to functional and structural alterations eventually leading to clinical symptoms. Dysfunction of protein clearance leads to intra- and extraneuronal accumulation of misfolded proteins and aggregates. The pathological hallmark of Lewy body disorders (LBDs) is the abnormal accumulation of misfolded proteins such as alpha-synuclein (Asyn) and amyloid-beta (Abeta) in a specific subset of neurons, which in turn has been related to deficits in protein clearance. In this paper we will highlight common intraneuronal (including autophagy and unfolded protein stress response) and extraneuronal (including interaction of neurons with astrocytes and microglia, phagocytic clearance, autoimmunity, cerebrospinal fluid transport, and transport across the blood-brain barrier) protein clearance mechanisms, which may be altered across the spectrum of LBDs. A better understanding of the pathways underlying protein clearance—in particular of Asyn and Abeta—in LBDs may result in the identification of novel biomarkers for disease onset and progression and of new therapeutic targets

    Role of pitrm1 in mitochondrial dysfunction and neurodegeneration

    Get PDF
    Mounting evidence shows a link between mitochondrial dysfunction and neurodegenerative disorders, including Alzheimer Disease. Increased oxidative stress, defective mitodynamics, and impaired oxidative phosphorylation leading to decreased ATP production, can determine synaptic dysfunction, apoptosis, and neurodegeneration. Furthermore, mitochondrial proteostasis and the protease-mediated quality control system, carrying out degradation of potentially toxic peptides and misfolded or damaged proteins inside mitochondria, are emerging as potential pathogenetic mechanisms. The enzyme pitrilysin metallopeptidase 1 (PITRM1) is a key player in these processes; it is responsible for degrading mitochondrial targeting sequences that are cleaved off from the imported precursor proteins and for digesting a mitochondrial fraction of amyloid beta (Aβ). In this review, we present current evidence obtained from patients with PITRM1 mutations, as well as the different cellular and animal models of PITRM1 deficiency, which points toward PITRM1 as a possible driving factor of several neurodegenerative conditions. Finally, we point out the prospect of new diagnostic and therapeutic approaches.publishedVersio

    Neuronopathic Gaucher disease models reveal defects in cell growth promoted by Hippo pathway activation

    Get PDF
    Gaucher Disease (GD), the most common lysosomal disorder, arises from mutations in the GBA1 gene and is characterized by a wide spectrum of phenotypes, ranging from mild hematological and visceral involvement to severe neurological disease. Neuronopathic patients display dramatic neuronal loss and increased neuroinflammation, whose molecular basis are still unclear. Using a combination of Drosophila dGBA1b loss-of-function models and GD patient-derived iPSCs differentiated towards neuronal precursors and mature neurons we showed that different GD- tissues and neuronal cells display an impairment of growth mechanisms with an increased cell death and reduced proliferation. These phenotypes are coupled with the downregulation of several Hippo transcriptional targets, mainly involved in cells and tissue growth, and YAP exclusion from nuclei. Interestingly, Hippo knock-down in the GBA-KO flies rescues the proliferative defect, suggesting that targeting the Hippo pathway can be a promising therapeutic approach to neuronopathic GD.A combination of Drosophila dGBA1b loss-of-function models and Gaucher Disease (GD) patient-derived iPSCs reveals an impairment in GD neuronal cell growth and that Hippo pathway hyperactivation contributes to the impairment

    Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism

    Get PDF
    Mutations in GBA1, the gene encoding the lysosomal enzyme β-glucocerebrosidase (GCase), which cause Gaucher's disease, are the most frequent genetic risk factor for Parkinson's disease (PD). Here, we employ global proteomic and single-cell genomic approaches in stable cell lines as well as induced pluripotent stem cell (iPSC)-derived neurons and midbrain organoids to dissect the mechanisms underlying GCase-related neurodegeneration. We demonstrate that GCase can be imported from the cytosol into the mitochondria via recognition of internal mitochondrial targeting sequence-like signals. In mitochondria, GCase promotes the maintenance of mitochondrial complex I (CI) integrity and function. Furthermore, GCase interacts with the mitochondrial quality control proteins HSP60 and LONP1. Disease-associated mutations impair CI stability and function and enhance the interaction with the mitochondrial quality control machinery. These findings reveal a mitochondrial role of GCase and suggest that defective CI activity and energy metabolism may drive the pathogenesis of GCase-linked neurodegeneration

    The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p.

    Get PDF
    Mutations in the GBA gene, encoding lysosomal glucocerebrosidase, represent the major predisposing factor for Parkinson's disease (PD), and modulation of the glucocerebrosidase activity is an emerging PD therapy. However, little is known about mechanisms regulating GBA expression. We explored the existence of a regulatory network involving GBA, its expressed pseudogene GBAP1, and microRNAs. The high level of sequence identity between GBA and GBAP1 makes the pseudogene a promising competing-endogenous RNA (ceRNA), functioning as a microRNA sponge. After selecting microRNAs potentially targeting both transcripts, we demonstrated that miR-22-3p binds to and down-regulates GBA and GBAP1, and decreases their endogenous mRNA levels up to 70%. Moreover, over-expression of GBAP1 3'-untranslated region was able to sequester miR-22-3p, thus increasing GBA mRNA and glucocerebrosidase levels. The characterization of GBAP1 splicing identified multiple out-of-frame isoforms down-regulated by the nonsense-mediated mRNA decay, suggesting that GBAP1 levels and, accordingly, its ceRNA effect, are significantly modulated by this degradation process. Using skin-derived induced pluripotent stem cells of PD patients with GBA mutations and controls, we observed a significant GBA up-regulation during dopaminergic differentiation, paralleled by down-regulation of miR-22-3p. Our results describe the first microRNA controlling GBA and suggest that the GBAP1 non-coding RNA functions as a GBA ceRNA

    Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways

    Get PDF
    Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity. To “humanize” this molecular network, we developed a computational method, TransposeNet. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked α-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy. Keywords: alpha-synuclein; iPS cell; Parkinson’s disease; stem cell; mRNA translation; RNA-binding protein; LRRK2; VPS35; vesicle trafficking; yeas

    Oct4-Induced Reprogramming Is Required for Adult Brain Neural Stem Cell Differentiation into Midbrain Dopaminergic Neurons

    Get PDF
    Neural stem cells (NSCs) lose their competency to generate region-specific neuronal populations at an early stage during embryonic brain development. Here we investigated whether epigenetic modifications can reverse the regional restriction of mouse adult brain subventricular zone (SVZ) NSCs. Using a variety of chemicals that interfere with DNA methylation and histone acetylation, we showed that such epigenetic modifications increased neuronal differentiation but did not enable specific regional patterning, such as midbrain dopaminergic (DA) neuron generation. Only after Oct-4 overexpression did adult NSCs acquire a pluripotent state that allowed differentiation into midbrain DA neurons. DA neurons derived from Oct4-reprogrammed NSCs improved behavioural motor deficits in a rat model of Parkinson's disease (PD) upon intrastriatal transplantation. Here we report for the first time the successful differentiation of SVZ adult NSCs into functional region-specific midbrain DA neurons, by means of Oct-4 induced pluripotency
    corecore