515 research outputs found
Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils
Mixtures of ideal polymers with hard spheres whose diameters are smaller than
the radius of gyration of the polymer, exhibit extensive immiscibility. The
interfacial tension between demixed phases of these mixtures is estimated, as
is the barrier to nucleation. The barrier is found to scale linearly with the
radius of the polymer, causing it to become large for large polymers. Thus for
large polymers nucleation is suppressed and phase separation proceeds via
spinodal decomposition, as it does in polymer blends.Comment: 4 pages (v2 includes discussion of the scaling of the interfacial
tension along the coexistence curve and its relation to the Ginzburg
criterion
Capillary Condensation and Interface Structure of a Model Colloid-Polymer Mixture in a Porous Medium
We consider the Asakura-Oosawa model of hard sphere colloids and ideal
polymers in contact with a porous matrix modeled by immobilized configurations
of hard spheres. For this ternary mixture a fundamental measure density
functional theory is employed, where the matrix particles are quenched and the
colloids and polymers are annealed, i.e. allowed to equilibrate. We study
capillary condensation of the mixture in a tiny sample of matrix as well as
demixing and the fluid-fluid interface inside a bulk matrix. Density profiles
normal to the interface and surface tensions are calculated and compared to the
case without matrix. Two kinds of matrices are considered: (i) colloid-sized
matrix particles at low packing fractions and (ii) large matrix particles at
high packing fractions. These two cases show fundamentally different behavior
and should both be experimentally realizable. Furthermore, we argue that
capillary condensation of a colloidal suspension could be experimentally
accessible. We find that in case (ii), even at high packing fractions, the main
effect of the matrix is to exclude volume and, to high accuracy, the results
can be mapped onto those of the same system without matrix via a simple
rescaling.Comment: 12 pages, 9 figures, submitted to PR
Optimized Discretization of Sources Imaged in Heavy-Ion Reactions
We develop the new method of optimized discretization for imaging the
relative source from two particle correlation functions. In this method, the
source resolution depends on the relative particle separation and is adjusted
to available data and their errors. We test the method by restoring assumed pp
sources and then apply the method to pp and IMF data. In reactions below 100
MeV/nucleon, significant portions of the sources extend to large distances (r >
20 fm). The results from the imaging show the inadequacy of common Gaussian
source-parametrizations. We establish a simple relation between the height of
the pp correlation function and the source value at short distances, and
between the height and the proton freeze-out phase-space density.Comment: 36 pages (inc. 9 figures), RevTeX, uses epsf.sty. Submitted to Phys.
Rev.
Interakcije nekih plijesni i aflatoksinogenog soja Asspergillus flavus NRRL 3251
The objective of this study was to evaluate biotic interaction between some mould species and active producer of aflatoxin B1 Aspergillus flavus NRRL 3251, co-cultured in yeast-extract sucrose (YES) broth. Twenty-five mould strains of Alternaria spp., Cladosporium spp., Mucor spp., A. flavus and A. niger, used as biocompetitive agents, were isolated from outdoor and indoor airborne fungi, scrapings of mouldy household walls, and from stored and post-harvest maize. Aflatoxin B1 was extracted from mould biomasses with chloroform and detected using the multitoxin TLC method. The results confirm antagonistic interaction between all strains tested. With Alternaria spp. and Cladosporium spp., aflatoxin B1 production decreased 100 %, compared to detection in a single culture of A. flavus NRRL 3251 (Cmean=18.7 µg mL-1). In mixed cultures with Mucor spp., aflatoxin B1 levels dropped to (5.6-9.3) µg mL-1, and the inhibition was from 50 % to 70 %. Four of five aflatoxin non-producing strains of A. flavus interfered with aflatoxin production in mixed culture, and reduced AFB1 productivity by 100 %. One strain showed a lower efficacy in inhibiting AFB1 production (80 %) with a detectable amount of AFB1 3.7 µg mL-1 when compared to control. A decrease in toxin production was also observed in dual cultivation with A. niger strains. It resulted in 100 % reduction in three strains), 90 % reduction in one strain (Cmean=1.9 µg mL-1) and 80 % reduction in one strain (Cmean=3.7 µg mL-1) inhibition.Cilj rada bio je procijeniti biotske interakcije između sojeva različitih vrsta plijesni i kontrolnog soja Aspergillus flavus NRRL 3251, producenta aflatoksina B1 (AFB1). Inhibitorno djelovanje u miješanim kulturama na tvorbu AFB1 ispitano je na dvadeset pet sojeva Alternaria, Cladosporium, Mucor i Aspergillus vrsta izoliranih iz zraka, strugotina pljesnivih zidova te uskladištenog i prezimljenog kukuruza. Biosinteze su provedene u tekućoj hranjivoj podlozi s kvaščevim ekstraktom (YESbujon). Ekstrakcije AFB1 iz biomase izvršene su multitoksinskom metodom tankoslojne kromatografije. Rezultati biotskih interakcija pokazali su antagonistički odnos svih testiranih sojeva. Alternaria i Cladosporium vrste simultano inokulirane sporama A. flavus NRRL 3251 inhibirale su tvorbu AFB1 100 % u odnosu na dokazani toksin u kontrolnoj biosintezi (konc. 18,7 µg mL-1). U miješanim kulturama vrstama roda Mucor dokazane su padajuće koncentracije AFB1 (9,3 µg mL-1, 7,5 µg mL-1 i 5,6 µg mL-1), odnosno inhibicija tvorbe toksina 50 % do 70 %. Atoksinogeni sojevi A. flavus inhibirali su tvorbu AFB1 80 % (1 soj, konc. 3,7 µg mL-1) i 100 % (4 soja). Antagonističko djelovanje prema toksinogenom soju, smanjujući tvorbu AFB1 u rasponu 80 % do 100 % (konc. 1,9 µg mL-1 i 3,7 µg mL-1), dokazano je u uzgojnim biosintezama s A. niger
Mould Routine Identification in the Clinical Laboratory by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry
BACKGROUND: MALDI-TOF MS recently emerged as a valuable identification tool for bacteria and yeasts and revolutionized the daily clinical laboratory routine. But it has not been established for routine mould identification. This study aimed to validate a standardized procedure for MALDI-TOF MS-based mould identification in clinical laboratory. MATERIALS AND METHODS: First, pre-extraction and extraction procedures were optimized. With this standardized procedure, a 143 mould strains reference spectra library was built. Then, the mould isolates cultured from sequential clinical samples were prospectively subjected to this MALDI-TOF MS based-identification assay. MALDI-TOF MS-based identification was considered correct if it was concordant with the phenotypic identification; otherwise, the gold standard was DNA sequence comparison-based identification. RESULTS: The optimized procedure comprised a culture on sabouraud-gentamicin-chloramphenicol agar followed by a chemical extraction of the fungal colonies with formic acid and acetonitril. The identification was done using a reference database built with references from at least four culture replicates. For five months, 197 clinical isolates were analyzed; 20 were excluded because they were not identified at the species level. MALDI-TOF MS-based approach correctly identified 87% (154/177) of the isolates analyzed in a routine clinical laboratory activity. It failed in 12% (21/177), whose species were not represented in the reference library. MALDI-TOF MS-based identification was correct in 154 out of the remaining 156 isolates. One Beauveria bassiana was not identified and one Rhizopus oryzae was misidentified as Mucor circinelloides. CONCLUSIONS: This work's seminal finding is that a standardized procedure can also be used for MALDI-TOF MS-based identification of a wide array of clinically relevant mould species. It thus makes it possible to identify moulds in the routine clinical laboratory setting and opens new avenues for the development of an integrated MALDI-TOF MS-based solution for the identification of any clinically relevant microorganism
一般社団法人神緑会事業報告
Primary central nervous system phaeohyphomycosis is a fatal fungal infection due mainly to the neurotropic melanized fungi Cladophialophora bantiana , Rhinocladiella mackenziei , and Exophiala dermatitidis. Despite the combination of surgery with antifungal treatment, the prognosis continues to be poor, with mortality rates ranging from 50 to 70%. Therefore, a search for a more-appropriate therapeutic approach is urgently needed. Our in vitro studies showed that with the combination of amphotericin B and flucytosine against these species, the median fractional inhibitory concentration (FIC) indices for strains ranged from 0.25 to 0.38, indicating synergy. By use of Bliss independence analysis, a significant degree of synergy was confirmed for all strains, with the sum ΔE ranging from 90.2 to 698.61%. No antagonism was observed. These results indicate that amphotericin B, in combination with flucytosine, may have a role in the treatment of primary cerebral infections caused by melanized fungi belonging to the order Chaetothyriales . Further in vivo studies and clinical investigations to elucidate and confirm these observations are warranted
A weakly stable algorithm for general Toeplitz systems
We show that a fast algorithm for the QR factorization of a Toeplitz or
Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A.
Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx =
A^Tb, we obtain a weakly stable method for the solution of a nonsingular
Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the
solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further
details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm
- …