34 research outputs found

    Studying Properties of Prospective Biologically Active Extracts from Marine Hydrobionts

    Get PDF
    Biologically active substances (BAS) extracted from marine hydrobionts are characterized by high diversity and efficiency. They are represented by carotenoids, phospholipids, saponins and other compounds possessing high antioxidant (AOA), antitumor, immunomodulatory, radioprotective, and hypolipidemic activities. Because of extremely high marine BAS activity, the BAS dose necessary for treatment and prevention of many diseases is very small.  The aim of present work was to assess biological properties of BAS complexes extracted from Black Sea marine inverterbrates for their following using in pharmacological preparations including liposomal drug delivery. BAS complexes were extracted from marine invertebrate tissues by two-phase extraction in combination with ultrasonication. Antioxidant activity of BAS extracts was determined with potassium permanganate discoloration method in an aqueous sulfuric acid medium. Antimicrobial activity was investigated by germination of BAS extracts.  BAS influence on lymphocyte proliferative activity was studied with help of cytogenetic analysis. In this paper, the assessment of antioxidant, antimicrobial and mitogenic activities of biologically active complexes extracted from marine invertebrate tissues is presented. BAS properties in the oil  and alcohol-water phases are compared. For the first time BAS complexes from Black Sea invertebrates are extracted by the resource-light method of two-phase extraction in combination with ultrasonication. Conditions for obtaining BAS extracts with optimal characteristics are proposed

    Identification of miR-200c and miR141-Mediated lncRNA-mRNA Crosstalks in Muscle-Invasive Bladder Cancer Subtypes

    Get PDF
    Basal and luminal subtypes of muscle-invasive bladder cancer (MIBC) have distinct molecular profiles and heterogeneous clinical behaviors. The interactions between mRNAs and lncRNAs, which might be regulated by miRNAs, have crucial roles in many cancers. However, the miRNA-dependent crosstalk between lncRNA and mRNA in specific MIBC subtypes still remains unclear. In this study, we first classified MIBC into two conservative subtypes using miRNA, mRNA and lncRNA expression data derived from The Cancer Genome Atlas. Then we investigated subtype-related biological pathways and evaluated the subtype classification performance using Decision Trees, Random Forest and eXtreme Gradient Boosting (XGBoost). At last, we explored potential miRNA-mediated lncRNA-mRNA crosstalks based on co-expression analysis. Our results show that: (1) the luminal subtype is primarily characterized by upregulation of metabolism-related pathways while the basal subtype is predominantly characterized by upregulation of epithelial-mesenchymal transition, metastasis, and immune system process-related pathways; (2) the XGBoost prediction model is consistently robust for classification of the molecular subtypes of MIBC across four datasets (The area under the ROC curve > 0.9); (3) the expression levels of the molecules in the miR-200c and miR141-mediated lncRNA-mRNA crosstalks differ considerably between the two subtypes and have close relationships with the prognosis of MIBC. The miR-200c and miR-141-dependent mRNA-lncRNA crosstalks might be of great significance in tumorigenesis and tumor progression and may serve as the novel prognostic predictors and classification markers of MIBC subtypes

    Инсулин-позитивные клетки печени и экзокринной части поджелудочной железы у животных с экспериментальным сахарным диабетом

    Full text link
    Aim. To compare the number of insulin+ cells in the liver and exocrine part of the pancreas with the type of experimental diabetes, blood glycose and glycated hemoglobin (HbA1c) level and with the number of Pdx1+ cells. Materials and methods. The experiment was carried out on 25 male Wistar rats (weighting (303.0 ± 25.3) g) that were divided into 3 groups: The first group consisted of intact animals, the second had animals with experimental diabetes type 1, and the third with animals with experimental diabetes type 2. Biochemical, immunohistochemical, ELISA methods and statistical analysis were used. Results. Insulin+ and Pdx1+ cells of rats with experimental diabetes were found in the liver and exocrine part of pancreas. The highest number of insulin+ cells in the liver was detected in type 2 diabetes (T2D). A strong positive correlation between the number of insulin+ cells in the liver and level of glycosylated hemoglobin in theblood was revealed in both type 1 and type 2 diabetes. Conclusion. Insulin+ cells are detected in the liver and acinar part of pancreas of both intact rats and rats with experimental diabetes. Group with T2D is characterized by the highest number of insulin+ cells in the liver compared with type 1 diabetes (T1D). The localization of insulin+ cells in the liver changes depending on the type of diabetes. In T2D insulin+ cells are located in all parts of liver acini, meanwhile in animals with T1D such cells are mainly detected in the periportal area. The expression of Pdx1+ in acinar cells of pancreas and liver cells is likely a mechanism for their reprogramming into insulin+ cells in experimental diabetes mellitus. © 2020 Siberian State Medical University. All rights reserved.This work was financially supported by the Russian Science Foundation, grant No. 16-1500039-P and the budget project No. АААА-А18-118020590108-7 of the Institute of Immunology and Physiology, UB RAS

    Ferrosilicate-Based Heterogeneous Fenton Catalysts: Influence of Crystallinity, Porosity, and Iron Speciation

    Get PDF
    Different ferrosilicate samples have been prepared with varying degrees of crystallinity, porous texture, and speciation of the Fe sites by both hydrothermal and sol–gel procedures: Fe-silicalite-1 with microcrystals (2–10 µm) and nanocrystals (180 nm), Fe-containing composite material consisting of silicalite-1 and amorphous silica, and two samples of mesoporous Fe-containing amorphous silica Fe–SiO2. The resulting solids have been tested for their potential as organic pollutants removal under Fenton-like conditions in heterogeneous catalytic wet peroxide oxidation of phenol and clarithromycin lactobionate. Our results indicate that the three aforementioned parameters show a strong interplay towards the abatement of pollutants in liquid phase. Thus, samples with high crystallinity show an improved performance in the oxidation of organic contaminants over amorphous samples in which the Fe speciation is very well controlled.The work was financially supported by the Ministry of Education and Science of the Russian Federation (RFMEFI60417 X 0159, title of the agreement: “Development of methods for hydrotreating of vacuum residue into high-quality marine fuels on macroporous catalysts”). The authors from Spanish side thank the Spanish Ministry of Economy and Competitiveness (MINECO), Generalitat Valenciana and FEDER (CTQ2015-66080-R MINECO/FEDER and PROMETEOII/2014/010) for financial support. J.G.A. thanks the Spanish Ministry of Economy and Competitiveness (MINECO) for his fellowship (BES-2013-063678)

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore