40 research outputs found

    Decomposition of bio‑degradable plastic polymer in a real on‑farm composting process

    Get PDF
    Background: The current wide diffusion of bio-degradable plastic made up by starch-based polymeric composite has focused the attention on the allocation of bio-polymers for the direct recycling in composting processes. Actually, the acknowledged current methods to estimate the bio-degradability are mainly based on laboratory tests and measurements under controlled conditions, while scarce information are available on the effective transformation of bio-film derivatives in real composting facilities. The aim of this paper was to determine at molecular level the decomposition of specific starch-based thermoplastic mulching film for horticultural crops, in a real on-farm composting system for the attainment of mature compost for agricultural application. Results: The initial and final molecular composition of both bulk biomasses and bio-plastic composite were evaluated through 13C solid-state CPMAS-NMR spectroscopy and off-line thermochemolysis—gas chromatography–mass spectrometry. The effective decomposition of the bio-polymer was shown by mono-dimensional and pseudo-2D NMR experiments that revealed the alteration of the intermolecular linkages among the monomeric constituents, while the thermochemolysis confirmed the complete decomposition of starch components. Concomitantly, the molecular characterization of bulk compost indicated the typical selective preservation of hydrophobic components currently found in aerobic composting processes, with a significant increase (+50 %) for the yields of aromatic lignin derivatives and recalcitrant aliphatic compounds. Conclusion: In addition to the classical testing methodologies, the detailed analytical investigation represents a powerful methodology to elucidate the molecular composition and modification of plastic bio-polymers thereby providing a valuable contribution to further promote the composting process as viable way to recycle the biodegradable polymeric materials

    Channel-aware routing for underwater wireless networks

    Get PDF
    Abstract-This paper presents a new cross layer routing protocol for underwater wireless sensor networks. The solution, termed CARP for Channel-aware Routing Protocol, exploits link quality information for cross layer relay determination. Nodes are selected as relays if they have a (recent) history of successful transmissions to their neighbors. CARP combines link quality with simple topology information (hop count), thus being able to route around connectivity voids and shadow zones. The protocol is also designed to take advantage of power control for selecting robust links. The performance of CARP has been evaluated through ns2-based simulations, and compared to the performance of two previously proposed routing protocols, namely, FBR and DBR. Our results show that CARP robust relay selection mechanism enables it to achieve throughput efficiency that is up to twice the throughput of FBR and almost three times that of DBR. CARP also obtains remarkable performance improvements over FBR and DBR with respect to end-to-end packet latency and energy consumption. Index Terms-Underwater acoustic networks, cross layer design, MAC and routing protocols

    OptoCOMM and SUNSET to enable large data offloading in Underwater Wireless Sensor Networks

    Get PDF
    In this paper we present the initial implementation of an integrated optical and acoustic system that can enable large data transfer between mobile and static nodes in Underwater Wireless Sensor Networks (UWSNs). The proposed system is based on the OptoCOMM optical modem and on the SUNSET Software Defined Communication Stack (S-SDCS) framework. The OptoCOMM modem allows to overcome the limits of maximum data rate and bandwidth imposed by the use of acoustic communication by providing a data rate of 10Mbps. SUNSET SDCS instead has been used to provide networking and fragmentation capabilities to efficiently offload large data in UWSNs. The performance of the proposed approach has been evaluated through in lab experiments where large files with arbitrary sizes have been optically transferred. The results achieved show that our system is able to transfer up to 1.5 GBytes of data in short time

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF
    Mowat-Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype-phenotype correlations of MWS.MethodsIn a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations.ResultsAll anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluation of MWS to date, we define its clinical evolution occurring with age and derive suggestions for patient management. Furthermore, we observe that its severity correlates with the kind of ZEB2 variation involved, ranging from ZEB2 locus deletions, associated with severe phenotypes, to rare nonmissense intragenic mutations predicted to preserve some ZEB2 protein functionality, accompanying milder clinical presentations.ConclusionKnowledge of the phenotypic spectrum of MWS and its correlation with the genotype will improve its detection rate and the prediction of its features, thus improving patient care.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.221

    Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care

    Get PDF
    Purpose: Mowat–Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype–phenotype correlations of MWS. Methods: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluati

    Comparing the SUNSET and DESERT frameworks for in field experiments in underwater acoustic networks

    No full text
    The emerging demand for pervasive underwater monitoring and control systems has significantly stimulated the research on network protocols for underwater acoustic sensor networks. In the last few years, several solutions have been proposed for this kind of networks at all layers of the protocol stack. However, to achieve a thorough understanding of the performance of these protocols running simulations is no longer enough and in field experiments are needed. Two different platforms, SUNSET and DESERT, have been recently developed and released open-source allowing to seamlessly simulate, emulate and test (at-sea) a variety of communication protocols. In this paper we compare the performance of these two frameworks, with a particular attention to their use during in field experimentation. Our tests show that when running simulations there is high compatibility and interoperability between the two systems. In actual underwater experiments, however, SUNSET represents a more mature, flexible and efficient solution. © 2013 IEEE

    A back-seat driver for remote control of experiments in underwater acoustic sensor networks

    No full text
    This paper presents a novel system to remotely control and reconfigure an heterogeneous underwater acoustic sensor network in scenarios with no direct access to all the underwater nodes after their deployment. The system uses the SUNSET framework to interact with and to operate the underwater network via single-hop and multi-hop acoustic transmissions. Users can remotely configure the underwater devices and the tests to run without the need to retrieve or bring to the surface the deployed nodes. The system allows the user to select different protocol stacks, protocol parameters and device behavior policies and to investigate the performance of several network configurations in an easy and fast way, avoiding that most of the experiment time is used to prepare the tests rather than to actually run the tests and collect the results. The presented mechanism has been successfully tested and validated during three in field campaigns, considering different underwater environments and communication devices. Our results show that the time to remotely control and reconfigure several batteries of tests for a variety of network configurations reduces to few tens of seconds, thus enhancing robustness and flexibility and significantly reducing the costs and logistic complexity of in field experiments. © 2013 IEEE
    corecore