16,728 research outputs found

    Signatures of Galaxy-Cluster Interactions: Tully-Fisher Observations at z~0.1

    Full text link
    We have obtained new optical imaging and spectroscopic observations of 78 galaxies in the fields of the rich clusters Abell 1413 (z = 0.14), Abell 2218 (z = 0.18) and Abell 2670 (z = 0.08). We have detected line emission from 25 cluster galaxies plus an additional six galaxies in the foreground and background, a much lower success rate than what was found (65%) for a sample of 52 lower-richness Abell clusters in the range 0.02 < z < 0.08. We have combined these data with our previous observations of Abell 2029 and Abell 2295 (both at z = 0.08), which yields a sample of 156 galaxies. We evaluate several parameters as a function of cluster environment: Tully-Fisher residuals, H-alpha equivalent width, and rotation curve asymmetry, shape and extent. Although H-alpha is more easily detectable in galaxies that are located further from the cluster cores, we fail to detect a correlation between H-alpha extent and galaxy location in those where it is detected, again in contrast with what is found in the clusters of lesser richness. We fail to detect any statistically significant trends for the other parameters in this study. The zero-point in the z~0.1 Tully-Fisher relation is marginally fainter (by 1.5 sigma) than that found in nearby clusters, but the scatter is essentially unchanged.Comment: 27 pages including 5 figures; accepted for publication in the Astronomical Journa

    Estimating entanglement of unknown states

    Get PDF
    The experimental determination of entanglement is a major goal in the quantum information field. In general the knowledge of the state is required in order to quantify its entanglement. Here we express a lower bound to the robustness of entanglement of a state based only on the measurement of the energy observable and on the calculation of a separability energy. This allows the estimation of entanglement dismissing the knowledge of the state in question.Comment: 3 pages, 1 figure. Comments welcome. V2: references updated. Accepted version by Applied Physics Letter

    Interplay of seismic and aseismic deformations during earthquake swarms: An experimental approach

    Get PDF
    Observations of earthquake swarms and slow propagating ruptures on related faults suggest a close relation between the two phenomena. Earthquakes are the signature of fast unstable ruptures initiated on localized asperities while slow aseismic deformations are experienced on large stable segments of the fault plane. The spatial proximity and the temporal coincidence of both fault mechanical responses highlight the variability of fault rheology. However, the mechanism relating earthquakes and aseismic processes is still elusive due to the difficulty of imaging these phenomena of large spatiotemporal variability at depth. Here we present laboratory experiments that explore, in great detail, the deformation processes of heterogeneous interfaces in the brittle-creep regime. We track the evolution of an interfacial crack over 7 orders of magnitude in time and 5 orders of magnitude in space using optical and acoustic sensors. We explore the response of the system to slow transient loads and show that slow deformation episodes are systematically accompanied by acoustic emissions due to local fracture energy disorder. Features of acoustic emission activities and deformation rate distributions of our experimental system are similar to those in natural faults. On the basis of an activation energy model, we link our results to the Rate and State friction model and suggest an active role of local creep deformation in driving the seismic activity of earthquake swarms

    Piezoelectric-based apparatus for strain tuning

    Get PDF
    We report the design and construction of piezoelectric-based apparatus for applying continuously tuneable compressive and tensile strains to test samples. It can be used across a wide temperature range, including cryogenic temperatures. The achievable strain is large, so far up to 0.23% at cryogenic temperatures. The apparatus is compact and compatible with a wide variety of experimental probes. In addition, we present a method for mounting high-aspect-ratio samples in order to achieve high strain homogeneity.Comment: 8 pages, 8 figure

    Sistemas Agroflorestais para a MesorregiĂŁo Sudoeste de Mato Grosso do Sul: um estudo propositivo.

    Get PDF
    bitstream/item/66228/1/31298.pdfOrganizado por: Alberto Feiden, Milton Parron Padovan, Adalgiza InĂȘs Campolim, AurĂ©lio VinĂ­cius Borsato, Ivo de SĂĄ Motta, JoĂŁo Batista Catto, TĂ©rcio Jacques Fehlauer

    Vortices in Spatially Inhomogeneous Superfluids

    Get PDF
    We study vortices in a radially inhomogeneous superfluid, as realized by a trapped degenerate Bose gas in a uniaxially symmetric potential. We show that, in contrast to a homogeneous superfluid, an off-axis vortex corresponds to an anisotropic superflow whose profile strongly depends on the distance to the trap axis. One consequence of this superflow anisotropy is vortex precession about the trap axis in the absence of an imposed rotation. In the complementary regime of a finite prescribed rotation, we compute the minimum-energy vortex density, showing that in the rapid-rotation limit it is extremely uniform, despite a strongly inhomogeneous (nearly) Thomas-Fermi condensate density ρs(r)\rho_s(r). The weak radially-dependent contribution (∝∇2lnâĄÏs(r)\propto \nabla^2\ln\rho_s(r)) to the vortex distribution, that vanishes with the number of vortices NvN_v as 1Nv\frac{1}{N_v}, arises from the interplay between vortex quantum discretness (namely their inability to faithfully support the imposed rigid-body rotation) and the inhomogeneous superfluid density. This leads to an enhancement of the vortex density at the center of a typical concave trap, a prediction that is in quantitative agreement with recent experiments (cond-mat/0405240). One striking consequence of the inhomogeneous vortex distribution is an azimuthally-directed, radially-shearing superflow.Comment: 22 RevTeX pages, 20 figures, Submitted to PR

    Signatures of Galaxy-Cluster Interactions: Spiral Galaxy Rotation Curve Asymmetry, Shape, and Extent

    Get PDF
    The environmental dependencies of the characteristics of spiral galaxy rotation curves are studied in this work. We use our large, homogeneously collected sample of 510 cluster spiral galaxy rotation curves to test the claim that the shape of a galaxy's rotation curve strongly depends on its location within the cluster, and thus presumably on the strength of the local intracluster medium and on the frequency and strength of tidal interactions with the cluster and cluster galaxies. Our data do not corroborate such a scenario, consistent with the fact that Tully-Fisher residuals are independent of galaxy location within the cluster; while the average late-type spiral galaxy shows more rise in the outer parts of its rotation curve than does the typical early-type spiral galaxy, there is no apparent trend for either subset with cluster environment. We also investigate as a function of cluster environment rotation curve asymmetry and the radial distribution of H II region tracers within galactic disks. Mild trends with projected cluster-centric distance are observed: (i) the (normalized) radial extent of optical line emission averaged over all spiral galaxy types shows a 4%+/-2% increase per Mpc of galaxy-cluster core separation, and (ii) rotation curve asymmetry falls by a factor of two between the inner and outer cluster for early-type spirals (a negligible decrease is found for late-type spirals). Such trends are consistent with spiral disk perturbations or even the stripping of the diffuse, outermost gaseous regions within the disks as galaxies pass through the dense cluster cores.Comment: 17 pages; to appear in the April 2001 Astronomical Journa

    Cooling of the Cassiopeia A neutron star and the effect of diffusive nuclear burning

    Full text link
    The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between observed surface temperature and interior temperature. This relation is determined by the composition of the neutron star envelope and can be influenced by the process of diffusive nuclear burning (DNB). We calculate models of envelopes that include DNB and find that DNB can lead to a rapidly changing envelope composition which can be relevant for understanding the long-term cooling behavior of neutron stars. We also report on analysis of the latest temperature measurements of the young neutron star in the Cassiopeia A supernova remnant. The 13 Chandra observations over 18 years show that the neutron star's temperature is decreasing at a rate of 2-3 percent per decade, and this rapid cooling can be explained by the presence of a proton superconductor and neutron superfluid in the core of the star.Comment: 7 pages, 7 figures; to appear in the AIP Conference Proceedings of the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy (January 3-7, 2019, Xiamen, China

    Investigation into Reynolds Number Effects on a Biomimetic Flapping Wing

    Get PDF
    This research investigated the behavior of a Manduca sexta inspired biomimetic wing as a function of Reynolds number by measuring the aerodynamic forces produced by varying the characteristic wing length and testing at air densities from atmospheric to near vacuum. A six degree of freedom balance was used to measure forces and moments, while high speed cameras were used to measure wing stroke angle. An in-house created graphical user interface was used to vary the voltage of the drive signal sent to the piezoelectric actuator which determined the wing stroke angle. The Air Force Institute of Technology baseline 50 mm wing was compared to wings manufactured with 55, 60, 65, and 70 mm spans, while maintaining a constant aspect ratio. Tests were conducted in a vacuum chamber at air densities between 0.5% and 100% of atmospheric pressure. Increasing the wingspan increased the wing’s weight, which reduced the first natural frequency; and did not result in an increase in vertical force over the baseline 50 mm wing. However, if the decrease in natural frequency corresponding to the increased wing span was counteracted by increasing the thickness of the joint material in the linkage mechanism, vertical force production increased over the baseline wing planform. Of the wings built with the more robust flapping mechanism, the 55 mm wing span produced 95% more vertical force at a 26% higher flapping frequency, while the 70 mm wing span produced 165% more vertical force at a 10% lower frequency than the Air Force Institute of Technology baseline wing. Negligible forces and moments were measured at vacuum, where the wing exhibited predominantly inertial motion, revealing flight forces measured in atmosphere are almost wholly limited to interaction with the surrounding air. Lastly, there was a rough correlation between Reynolds number and vertical force, indicating Reynolds number is a useful modelling parameter to predict lift and corresponding aerodynamic coefficients for a specific wing design
    • 

    corecore