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Article

Investigation into Reynolds number
effects on a biomimetic flapping wing

Daniel K Hope, Anthony M DeLuca and Ryan P O’Hara

Abstract

This research investigated the behavior of aManduca sexta inspired biomimetic wing as a function of Reynolds number by

measuring the aerodynamic forces produced by varying the characteristic wing length and testing at air densities from

atmospheric to near vacuum. A six degree of freedom balance was used to measure forces and moments, while high

speed cameras were used to measure wing stroke angle. An in-house created graphical user interface was used to vary

the voltage of the drive signal sent to the piezoelectric actuator which determined the wing stroke angle. The Air Force

Institute of Technology baseline 50 mm wing was compared to wings manufactured with 55, 60, 65, and 70 mm spans,

while maintaining a constant aspect ratio. Tests were conducted in a vacuum chamber at air densities between 0.5% and

100% of atmospheric pressure. Increasing the wingspan increased the wing’s weight, which reduced the first natural

frequency; and did not result in an increase in vertical force over the baseline 50 mm wing. However, if the decrease in

natural frequency corresponding to the increased wing span was counteracted by increasing the thickness of the joint

material in the linkage mechanism, vertical force production increased over the baseline wing planform. Of the wings

built with the more robust flapping mechanism, the 55 mm wing span produced 95% more vertical force at a 26% higher

flapping frequency, while the 70 mm wing span produced 165% more vertical force at a 10% lower frequency than the Air

Force Institute of Technology baseline wing. Negligible forces and moments were measured at vacuum, where the wing

exhibited predominantly inertial motion, revealing flight forces measured in atmosphere are almost wholly limited to

interaction with the surrounding air. Lastly, there was a rough correlation between Reynolds number and vertical force,

indicating Reynolds number is a useful modelling parameter to predict lift and corresponding aerodynamic coefficients

for a specific wing design.
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Introduction

The field of flapping wing micro air vehicles (FWMAV)

is an emerging field in the greater discipline of aeronau-

tical engineering. The needs of the Department of

Defense (DoD) and industry over the past century

have necessarily entailed the design of large fixed-

wing or rotary aircraft capable of carrying people

and cargo over long distances. Likewise, the technolo-

gy in this area of study has largely matured, as can be

demonstrated by the continued use of airframes which

were originally designed in the 1950s and 1960s. Rotor

or propeller driven micro air vehicles (MAVs) have

been successfully used for several years, but have the

disadvantages of a larger acoustic signature and con-

spicuous appearance. However, FWMAVs present a

promising field for future application. Bird or insect
sized aircraft have several advantages. FWMAVs are
designed to be more maneuverable, harder to detect,
and smaller than conventional aircraft, which leads to
several promising niche mission uses.

FWMAVs are a continuation of the direction in
recent decades of the DoD relying more heavily on
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unmanned systems. The Department of Defense
Unmanned Systems Integrated Roadmap lists several
key areas which unmanned systems hold an advantage
over manned systems, including ‘long-duration under-
takings with mundane tasks ill suited for manned sys-
tems,’ missions which ‘have the potential to
unnecessarily expose personnel to hazardous condi-
tions,’ and ‘capabilities that are inherently danger-
ous.’1 MAVs follow this paradigm, offering further
potential advantages, to include a smaller logistics
footprint, augmentation to existing weapons systems,
delivering capabilities to smaller units, which may
not have advanced technology at their disposal, and
several tactical applications in an asymmetric battle-
field, typified by the recent conflicts throughout the
Middle East.2 The potential advantages MAVs offer
on the battlefield motivate further academic investi-
gation in the continuous art of military aerial
innovation.

The relatively new innovation of FWMAVs pro-
vides unique opportunities, but also involves several
engineering challenges inherent in most immature
novel technological fields of study. The small size of
FWMAVs presents several challenges. Insect-sized
wings are designed to operate in unsteady low
Reynolds number flow. This separates the flow charac-
teristics of FWMAVs from aircraft in more common
flight conditions, which have been researched and stud-
ied at length. The small amount of lift and thrust gen-
erated by MAVs makes reducing weight extremely
critical for insect-sized FWMAVs. Optimizing the
structures, selecting the lightest available materials,
which still fulfill other design requirements, and pro-
ducing enough lift to attach a payload are important
considerations. There are several other issues related to
miniaturization. The limitations of small, lightweight
energy sources are a problem in autonomous flight.
Small state of the art batteries do not have high
enough energy densities to allow a MAV to operate
for extended periods of time. MAVs also carry minia-
turized optical systems for control and intelligence, sur-
veillance, and reconnaissance (ISR) purposes, which
are difficult to manufacture at a sufficient resolution
and a low enough weight. These are some of the chal-
lenges why optimizing lift with respect to weight is a
critical problem.

Background and literature review

The following consists of a summary of the Air Force
Institute of Technology (AFIT) FWMAV technology
and a review of past literature pertaining to this
research. This includes an examination of the funda-
mentals of FWMAV flight, and a review of recent
FWMAV research accomplished at AFIT.

Flapping wing aerodynamics

Ellington divides flapping wing flight between turbulent
regimes, characteristic of most birds, and laminar
regimes involving strong vortices, which are character-
istic of most insects. Ellington’s research shows large
insects reach Reynolds numbers of 10,000, at which
point turbulence begins. This low Reynolds number
regime encompasses fliers up to 20 g. Anything greater
than this Reynolds number and mass range is beyond
AFIT’s research scope.3

Fliers at this scale also tend to have a horizontal
stroke plane angle (b), as shown in Figure 1. The
stroke plane describes the angle between the horizontal
and the mean plane along which the chord travels. The
wing movement of a horizontal stroke plane wing con-
sists of four distinct phases.5 The wing beats in one
direction, and then at the end of the half stroke, it
undergoes a rotation along the longitudinal axis
called supination. The wing then flaps in the other
direction, and then at the end of the half stroke, it
undergoes another rotation called pronation. All
together this movement, as previously stated, resembles
a figure eight pattern. This motion can be described
with three kinematic angles. These are the elevation
angle (h), the wing position angle (/), and the angle
of attack (a). The elevation angle is the angle between
the mean chord and the stroke plane angle. The wing

Figure 1. The three kinematic angles of an insect with an
approximately horizontal stroke plane. Stroke plane angle (b) is
the angle between the horizontal (horizontal red dotted line)
and stroke plane (gray dotted line). Elevation angle (h) is the
angle between the mean chord and b. Wing position angle (/) is
the position of the wing at that specific moment. Angle of attack
(a) is the angle between the mean chord and stroke plane angle.4
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position angle describes the position of the wing along

the stroke plane at a specific moment. The angle of

attack is the angle between the mean chord of the

wing and the relative wind. The angle between stroke

angle position at pronation and supination is the

stroke angle (U), which describes the amplitude of the

flapping motion.
Conn et al. present a modified Reynolds number for

flapping wings by defining the velocity as the wingtip

velocity.6 In addition, the characteristic length is defined

as the mean chord of the wing. This is used to calculate

the Reynolds number, shown in equation (1)

Re ¼ 4qUfR2

lAR
(1)

The density (q) and dynamic viscosity (m) refer to the

properties of the air, flapping frequency (f) is the

number of times the wing completes a complete flap

cycle per second, and the wing length (R) describes

the length of one wing from the base to the tip. The

aspect ratio AR is 14.42 for the particular wing used at

AFIT. Figure 2 visually describe R and U.
The capture and recirculation of the leading edge

vortex (LEV) has been extensively studied as an

unsteady mechanism primarily responsible for generat-

ing lift over insect wings. This has been demonstrated

with the Manduca sexta wing, which is used in research

because of the size and aerodynamic influence of the

forewings.7 The existence of a LEV over the Manduca

sexta wing has been visually analyzed with live speci-

mens and with the AFIT designed biomimetic wing.8,4

The LEV consists of a vortex with appreciable span-

wise flow maintained at the leading edge of the wing
during the upstroke and downstroke. At pronation and
supination, the vortex is shed, after which a new vortex
is quickly formed. The LEV causes a low pressure area
above the wing, which delays the onset of stall. The
LEV also increases circulation and increases the appar-
ent camber of the wing from the perspective of the
relative wind.4 The development and formation of the
LEV provides an unsteady mechanism through which
the M. sexta can produce greater lift than a simplified
quasi-steady model would predict.4

Mechanical considerations for biomimicry

Piezo electric actuators (PZT) are an effective mecha-
nism for generating flapping motion.9 PZTs have sev-
eral advantages for FWMAV use, which include their
light weight and ability to produce oscillatory motion
in response to an electric signal. Wood designed a four-
bar linkage which transmits the linear translation of the
PZT tip (d) into angular motion (hw) of the wing.

Figure 3 demonstrates the design of the four-bar
linkage.11 The four-bar linkage consists of four seg-
ments, labeled L1, L2, L3, and L4. The stroke angle
(U) is determined through equation (2)

U ¼ � p
2
þ arcos½ðL2

3 þ ðL1 þ L2 � L4 � dÞ2 þ L2
3

þðL2 � L4Þ2 � L2
1Þð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
3 þ ðL2 � L4Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
3 þ ðL1 þ L2 � L4 � dÞ

q
2
�1

Þ�
þ arctanð L3

L1 þ L2 � L4 � d
Þ þ arctanðL2 � L4

L3
Þ

(2)

Figure 2. Span (R) and flap angle (U) used to calculate Reynolds
number.

Figure 3. Four-bar linkage schematic (top) and four-bar linkage
(bottom).4,10
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The four-bar linkage mechanism has three free

joints. One joint is attached to L4, one joint links L1

to L2, and the other joint links L1 to the translating

material attached to the tip of the piezo. The transmis-

sion ratio (T), which describes the ratio of stroke angle

to displacement angle, is shown in equation (3). The L3

linkage directly determines the total stroke angle for a

given piezo displacement

T� 1

L3
(3)

Whitney and Wood outlined the use of a passive

rotation joint to simulate the flapping movement of

the wing.10 With passive rotation, a flexible rotation

joint attaches the wing to the four-bar linkage, allowing

the wing to rotate as a result of the flapping motion. At

the end of the stroke, the wing contacts an angled pas-

sive rotation joint, which transfers the kinetic energy of

the wing into motion about the joint, thus enabling

pronation and supination.
Figure 4 shows a schematic of a passive rotation

joint, and equation (4) calculates rotational stiffness

of the joint

jh ¼ Ehwht
3
h

12lh
(4)

jh (N m/radian) is the rotational stiffness of the rota-

tion joint, which depends on the modulus (Eh)

(N/(radian m2)), width in mm (wh), thickness in mm (th),

and length in mm (lh). The stiffness of the passive rotation

joint must be modulated to ensure proper pronation and

supination for a given wing design.

Although this design entails a passive approach to
pronation and supination, design of the rotation joint
stiffness and angle stops13 ensures control of the angle
of attack of the wing as well as smooth wing rotation.

Previous AFIT FWMAV research

O’Hara and Palazotto conducted a morphological
study of M. sexta forewing specimens for the purpose
of constructing a biomimetic wing with similar flapping
performance.7 The scales of the hawkmoth were
removed and the dimensions of the venation of the
wings was determined using top-down and cross-
sectional images of wing, as shown in Figure 5.

The material properties of the veins and wing mem-
brane were measured and a laser was used to measure
the three dimensional structure of the wing, including
camber. This completed a thorough morphological
study of the material and structural properties of the
M. sexta forewing. Following the morphological study,
O’Hara and Palazotto conducted scanning laser vibr-
ometry tests to determine the forewing dynamics.
O’Hara selected various materials to best match the
properties of the M. sexta forewing.14 Through careful
consideration of the material properties of the biolog-
ical wing, conclusions reached by previous research,
and measurement of the properties of various materi-
als, 12.5 mm mylar was determined to be a suitable
material to mimic the membrane, and a 0/90/0 YSH-
70A carbon fiber laminate best replicates the strength
and stiffness of the internal venation pattern.

Following this, O’Hara detailed a repeatable
manufacturing method for in-house fabrication of the
biomimetic wing, and the PZT and flapper support
base. The construction of the wing began with the
development of CAD designs of the venation pattern.
This was followed by pressing of the carbon fiber lam-
inate. Laser ablation was then used to cut the CAD
patterns into the carbon fiber. Finally, the carbon
fiber and Kapton were pressed together, followed by
thermosetting of the mylar membrane.

Once the biomimetic wing and flap mechanism were
constructed, testing was conducted to compare the

Figure 4. Passive rotation joint schematic.12
Figure 5. Locations of cross-sectional cuts made to measure
venation dimensions across the wing.7
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engineered wing to the biological wing, shown in
Figure 6. This testing determined if the structural
dynamics of the engineered wing matched the biologi-
cal wing without scales, thereby showing the final wing
and flapper design performs at least equivalently to its
biological analogue. This makes it suitable for future
FWMAV research in the 50 mm length wing
configuration.

DeLuca et al. used the O’Hara wing design to con-
duct a series of tests to provide a comprehensive under-
standing of the aerodynamic forces and moments, and
modeled the aerodynamic coefficients produced by the
new wing design to be used in future control law devel-
opment.4,15 A ATI Nano-17 titanium force torque
sensor was used to measure the forces on the wing,
and a stereo particle image velocimetry (PIV) system

was used to capture images of the airflow. The tests

utilized 30�, 45�, and 60� angle stops to alter the

angle of attack of the wing by limiting the range of

rotation at pronation and supination.
The PIV imagery, shown in Figure 7, and force/

moment measurements together conclusively deter-

mined the nature of the unsteady aerodynamic airflow,

how exactly the vortices form and shed, and why exact-

ly the quasi-steady assumption failed to provide accu-

rate predictions for the forces and moments of the

wing.
The kinematic angles were calculated using high

speed camera imagery and a custom written edge detec-

tion algorithm, through which instantaneous lift and

drag coefficients were calculated with a new mathemat-

ical model. These coefficients were also utilized to esti-

mate lift and drag using lifting line theory.

Experimental methodology

The laboratory instrumentation setup, flapper mecha-

nism fabrication process, and flapper operationaliza-

tion process were nearly identical to those used by

DeLuca,4 O’Hara and Palazotto,7 and DeLuca et

al.15 However, there were two alterations made to the

previously utilized methodology. First, modified CAD

designs were created to fabricate larger wing designs.

Second, slightly different instrumentation setup and

testing procedures were used for the partial vacuum

testing.
Figure 6. Biological Manduca sexta wing vs. biomimetic M. sexta
wing.14

Figure 7. PIV images of LEV formation and shedding of a single flap cycle, segmented into eight phases. The red arrows show the
location of the vortices in each frame, while the yellow arrows show the movement of each individual vortex from frame to frame.4

LEV: leading edge vortex; PIV: particle image velocimetry.
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Construction of constant aspect ratio, longer span

wings

The flapper assemblies used in this research were fab-

ricated as prescribed by Lindholm13 and O’Hara.14

The materials used in the fabrication process were

carbon fiber, Pyralux, 12.5 mm, 25 mm, and 50 mm
thick Kapton tape, mylar, porous and nonporous

Teflon, and airweave SS FR bleeder cloth. The hard-

ware used in the fabrication process included an LPKF

Multipress S, LPKF Proto Laser U, and Eden 500 V

rapid prototype machine. Additional CAD drawings

were made to fabricate larger wings used in this

research.
The drawings used to cut the carbon fiber and

Kapton pieces were designed in CorelDraw for previous

research. Four larger wing geometries were created,

based on the CAD files of the original wing. The new

wings, shown in Figure 8, were 55, 60, 65, and 70 mm in

length, respectively. The width of the passive rotation

joint, defined in equation (4), was modified to increase

the joint’s stiffness in proportion to the increase in the

length of the wing. A 40% longer wing, measured from

where the rotation joint meets the wing base, also had a

40% wider rotation joint. All five passive rotation joint

designs are shown in Figure 9.
The slits through which the angle stops are placed

were moved further apart as the passive rotation joint

widened. The dims of the attachment point to the four-
bar linkage remained unchanged. The wing planform
area was scaled proportionally in both directions so the
aspect ratio remained constant. The rectangular
boundary of the CAD drawings was lengthened to
accommodate the increased length of the wing.
However, the rectangular boundary was not widened,
so the two alignment holes remained identical for all
CAD drawings. Because each wing was made with four
separate CAD drawings, as shown in Figure 10, all four
drawings were altered in complete synchrony with one
another.

The four separate CAD drawings were used for laser
ablation of the carbon fiber, Kapton, and combined
carbon fiber, Kapton, and carbon fiber (CKC). The
separate CAD drawings for each wing length were
overlaid in Microsoft Paint to ensure overlap of all
four rectangles, wings, alignment holes, and fiducial
holes. This step revealed discrepancies between the sep-
arate CAD images caused by misalignment in the
increased span wing designs.

The definition of wing length (R) became a matter of
concern with the change in passive rotation joint
length. The wingtip velocity (V) was calculated by mea-
suring the distance between the wingtip and the point
about which the wing rotated. The wing did not rotate
about the wing root, which was used to measure R.
Rather, the wing rotated at the four-bar linkage.

Figure 8. CAD geometry of 50, 55, 60, 65, and 70 mm wings.

Figure 9. CAD passive rotation joints of 50, 55, 60, 65, and 70 mm wings. The 45� and 60� angle stops were used for this research.
The angle stops were attached through the slits shown in the passive rotation joint schematics above.
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Therefore, a more accurate distance for measuring the

wingtip velocity was from the tip of the wing to the

edge of the attachment point to the four-bar linkage.

This new wing length was named R2, shown in Figure

11. R was used to calculate the characteristic length (L),

which was the mean chord of the wing, whereas R2 was

used to calculate the wingtip velocity. Equation (1) was

reformulated to account for the two separate lengths,

shown in equation (5)

Re ¼ 4qUfRR2

lAR
(5)

Vacuum testing

The Nano-17 force transducer, optoNCDT displace-

ment sensor, and flapper assembly were placed in a

24� 24 in. Abbess Instruments and Systems, Inc stain-

less steel vacuum chamber, shown in Figure 12. The

vacuum chamber had reinforced plexiglass doors on

two sides, as well as glass windows on three sides. All

tests were conducted within the chamber. Tests done at

atmospheric pressure were completed with the two

doors open to enable easy access to the flapper assem-

bly, which also reduced recirculation of still air in the

atmospheric tests. For the vacuum tests, the doors were

clamped shut, and the pressure was monitored.

An Instrutech, Inc Superbee CVM201GAA gauge,

shown in Figure 13, was used to measure the pressure

of the air. The gauge had a range of 1:00� 10�4 Torr to

1000 Torr. The flapper, Nano-17, and optoNCDT data

were relayed through five separate cables, which ran

through the vacuum chamber. The optoNCDT and flap-

per were attached through these extension cables for

both atmospheric and non-atmospheric tests to preserve

consistency in the signal to noise ratios. The Nano-17,

however, was connected via the extension cable only

during vacuum tests. This was done because the

Figure 11. Comparison between R, used to calculate L, and R2,
used to calculate V.16

Figure 10. Wing geometries for separate fabrication steps. 1 and 2 are for carbon fiber, 3 is for Kapton, and 4 for the total wing.

Figure 12. Vacuum test chamber and associated measurement
and instrumentation equipment.
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Nano-17 gave less accurate data when connected to its
extension cable because of excessive signal loss.
However, testing showed taking enough test points for
a specific test condition and averaging the data would
significantly reduce the effect of the extension cords.

For the vacuum tests, the wing was first flapped at a
small number of atmospheric pressure test points to
measure baseline data for the wing at these conditions,
as well as to detect if there were any defects in the wing
and flapper assembly. This was done with the doors
closed, to compare the performance of each individual
wing at atmospheric pressure and partial vacuum
under identical test configurations. After this was
accomplished, the vacuum pump was opened until
the chamber was at a pressure 10% lower than the
enumerated test pressure, to account for the fact the
chamber was not a perfectly sealed system. This made
it necessary to start each test at a lower pressure, and
slightly open the valve to creep up to the specified pres-
sure. Air did leak from the vacuum chamber, but
occurred at a low enough rate such that data could
be taken at desired pressures within 1% of the pre-
scribed value for a test run of five successive flap cycles.

Another factor to consider when testing at lower
than atmospheric densities was the need to adjust the
driving amplitude range. The drive signal sent to the
piezo to flap the wing is given in equations (6) and (7).15

The signal can be described with the driving amplitude
voltage (A), which describes the voltage of the signal as
a fraction of 200 V, and which alters the amplitude of
the flapping motion, bias (g), which weights the flap-
ping motion towards either the upstroke or downstroke
while maintaining the same period (T), and the flapping
frequency (x)

sinusoidal drive signal ¼

DCbias signalð Þ � 1

2
þ sin xtð Þ þ g

� �
(6)

DC bias signal ¼ A� 200Vð Þ (7)

For atmospheric tests with the original 50 mm wing,
the driving amplitude voltage was varied between 0.2 A

and 0.7 A, in increments of 0.025 A, for a total of 21
different driving amplitudes. However, when the air
was at densities lower than atmospheric, less voltage
was required to flap the wing at a particular stroke
angle, because the wing had less air resistance and
drag to move through. Therefore, the wing was flapped
at various driving amplitudes to determine the voltage
which would achieve the maximum designed stroke
angle. The driving amplitude increment was altered
so the number of test points remained the same,
given the adjusted maximum driving amplitude. As
the density of the air was decreased, the test sweeps
occurred over a smaller voltage span, but with an
evenly spaced number of test points. At the lowest den-
sities, the minimum driving amplitude was also varied,
as the wing would flap at lower minimum voltages.
Again, the increments between amplitude settings
varied to maintain an equal number of test points.

Air pressure was maintained at specified values by
alternatively engaging the vacuum pump, and opening
the air release valve, shown in Figures 12 and 13.
Typically the pressure was lowered to slightly below
the testing condition, and testing began once the pres-
sure reached the desired levels. Once testing was com-
plete, the vacuum pump was turned on for a few
seconds to lower the air pressure, so the manual
tuning and data collection could begin for the next
driving amplitude. For the tests conducted at the
lowest air density, the vacuum pump was operating
for the entire test duration to ensure data was collected
at or near complete vacuum. The pressure of the cham-
ber leveled out to between 4.3 and 4.33 Torr for these
tests, or 573 to 577 Pa, which is approximately 0.57%
of standard atmospheric pressure.

Results and discussion

The goal of this research was to answer three funda-
mental questions. First, whether increasing the size of
the wing is practical to increase vertical force and lift.
Second, to determine the power requirements and force
and moment response of the wing under purely inertial
motion, with no aerodynamic effects of air resistance.
Third, if correlating Reynolds number data compared
to vertical force yields trends for modelling future
designs.

The following tests assisted in answering these three
questions. First, a series of tests were conducted with
increasingly larger wings, to determine the effect
increasing wing size has on vertical force, as well as
to develop part of the aforementioned Reynolds
number data. Second, a series of tests at partial
vacuum were conducted to provide further data regard-
ing Reynolds number. Finally, a test at near vacuum
was conducted to determine the power requirements,

Figure 13. Pressure display, release valve, and cables.
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forces, and moments produced by the wing under

purely inertial conditions.

Wing length modification

Four wings with longer spans were designed to examine

the effect of larger scaled wings on vertical force pro-

duction. Increasing the length of the wingspan leads to
an increase in weight, as well a decrease in natural fre-

quency. The decrease in natural frequency (xn) is due

to the change in equivalent stiffness (keq) and equiva-
lent mass (meq) of the system, as shown in equation (8)

xn /
ffiffiffiffiffiffiffiffi
keq

meq

s
(8)

Table 1 shows the weight and natural frequencies of

the larger wing designs. The wingtip velocity was cal-
culated with f, U, and R2, and normalized with respect

to the 50 mm wing wingtip velocity. For a given stroke

angle, the wingtip velocity is proportional to R2� f.
There is a clear trend showing the wingtip velocity

decreasing with increasing wingspan. The 65 mm and

70 mm wings failed to produce sufficient lift due to low
flapping velocity and an inability of the wing to rotate

and pronate properly. This tendency to simply paddle,

rather than pronate and supinate, is traced to the lower
flapping velocity, which indicates the wing did not

have enough kinetic energy to bend the passive rotation
joint.

As the two largest wings lacked the capability to

produce sufficient vertical forces, no further testing
was conducted. Figures 14, 15, and 16 show the vertical

force, power, and vertical force to power ratio of the 55

and 60 mm wings in comparison to the original 50 mm
wing design, respectively.

The 55 mm wing had a higher vertical force than the

50 mm wing, ranging from about 50 to 100 mgF for a
given stroke angle. This exceeds the 10 mg increase in

weight, indicating the 55 mm wing is a superior wing,
despite flapping at a lower frequency. The lower flap-

ping frequency combined with the stiffer passive

Table 1. R, R2, AR, wing weight, and natural frequency of wings
with an aspect ratio of 14.42.

R R2 Wing Natural Normalized

(mm) (mm) Weight Frequency Wingtip

(mgF) (Hz) Velocity

50 57.5 68.7 17.29 1.0

55 63 78.1 15.72 1.0

60 68.42 94.3 9.43 0.65

65 73.87 105.9 8.0 0.59

70 79.3 111.5 6.5 0.52

Figure 14. Vertical force of the 50 mm wing, 55 mm wing, and
60 mm wing.

Figure 15. Power of the 50 mm wing, 55 mm wing, and 60 mm
wing.

Figure 16. Vertical force to power ratio of the 50 mm wing, 55
mm wing, and 60 mm wing. There was no notable trend between
the three wings.
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rotation joint provides a more resilient operating

design, which is less responsive to failure and wing sep-

aration from the joint. The 55 mm wing consumed

more power than the 50 mm wing, as shown in

Figure 15. The small, but consistent improvement in

vertical force produced by the 55 mm wings was

expected, as measurements of biological M. sexta

forewings by O’Hara showed a range in length from

42.59 mm to 57.85 mm.14 The range in wing lengths

seen in nature within this single species corresponds

with a similar range in total body mass, and hence

total lift production. Therefore, the small range of

wing sizes seen among moths of this species may rep-

resent a range in which wing length predominately

determines the force production capabilities of the

wing.
However, the 60 mm wing shows a reversal of this

trend. The increased wing length leads to a decrease in

vertical force, varying from 50 mgF at a stroke angle

of 50�, to 250 mgF for a stroke angle of 145�. This
decrease in force production is inextricably linked to

the decrease in wingtip velocity. As Figure 15 shows,

the 60 mm wing consumed less power than the 50 mm

wing. Figure 16 demonstrates there is no clear trend

related to wing efficiency due to a simple change in

wing length within this range.

Four-bar linkage modification

The original four-bar linkage design consisted of 12.5

mm thick Kapton. Two additional four-bar linkage

designs were constructed to increase the total system

natural frequency. The new four-bar linkages utilized

25 mm and 50 mm thick Kapton joints. Figures 17, 18,

and 19 compare the vertical force, power, and vertical

force to power ratio of the three linkages, each used to

flap the baseline 50 mm wing.

There was an increase in the natural frequency of the
system. Whereas the original wing flapped at approxi-
mately 17 to 19 Hz, the 25 mm linkage increased this
frequency to 22 Hz, and the 50 mm linkage increased it
to 25 Hz. The maximum stroke angle of the wing
decreased from 150� to 130� for the 50 mm linkage,
due to an increase in drag.

The 25 mm linkage increased the vertical force by
100 to 200 mgF for a given stroke angle. The 50 mm
linkage, although successful in increasing the natural
frequency even further, produced vertical forces of
the same magnitude as the 12.5 mm linkage design.
This can be attributed to the degradation in the flap-
ping motion of the wing, characterized by a vertical
bouncing motion and a nearly horizontal angle of
attack, as shown in Figure 20.

Figure 17. Vertical force of the 50 mm wing flapping with four-
bar linkage Kapton thicknesses of 12.5, 25, and 50 mm.

Figure 18. Power of the 50 mm wing flapping with four-bar
linkage Kapton thicknesses of 12.5, 25, and 50 mm.

Figure 19. Vertical force to power ratio of the 50 mm wing
flapping with four-bar linkage Kapton thicknesses of 12.5, 25, and
50 mm.
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Increasing the thickness of the linkage increased the

flap natural frequency and reduced the total stroke

angle, which resulted in an increase in power required

to operate the wing, shown in Figure 18. At a stroke

angle of 130�, power consumption increased 300%

compared to the original design. Furthermore, the

wing suffered catastrophic wing failure at the rotation

joint after a few seconds of operation. Figure 19 dem-

onstrates how the increase in vertical force compen-

sates for the increase in power for the 25 mm linkage,

while the efficiency precipitously declines for the 50 mm
linkage.

The results showed a limit to the benefits of increas-

ing the natural frequency of the wing. The wing kinetic

energy changes with the velocity squared, whereas the

mass has a linear effect on kinetic energy. Thus,

increasing the natural frequency increases the kinetic

energy more than increasing the mass. Instead of con-

tributing to the flapping and smooth transitions, and

consistent pronation and supination, the excess kinetic

energy resulted in unwanted vertical bouncing, and a 0�

angle of attack, which hindered vertical force produc-

tion. The AFIT FWMAV design did not operate as

designed when excessive power was delivered to the

system.

Altered wings and linkages

Tests were conducted with various combinations of

new linkage and wing designs to balance the design

trade offs of wing size vs. natural frequency. Table 2

shows the wing length, linkage thickness, natural fre-

quency, and normalized wingtip velocity of the pro-

posed wing designs.

The 45� angle stop was used only for the 55 mm
wings, while the other wings utilized the 60� angle

stop. Figures 21, 22, and 23 illustrate the forces,
power consumption, and efficiency of the new wing
designs, respectively.

Because of the varying frequencies and wing lengths,
there was not a clearly delineated progression of verti-

cal force with increasing wing length. However, there

Table 2. R, R2, wing weight, and natural frequency of wings with
an aspect ratio of 14.42.

R R2 4-Bar linkage Natural Normalized

(mm) (mm) Thickness Frequency Wingtip

(mm) (Hz) Velocity

50 57.5 12.5 17.29 1.0

55 63 50 22.794 1.44

60 68.42 50 19.65–20.44 1.35–1.41

65 73.87 25 11 0.82

70 79.3 25 9.43 0.75

70 79.3 50 15.72 1.25

Figure 20. Angle of attack change between 12.5 mm linkage
(top) and 50 mm linkage (bottom). Image is of the wing, with the
camera on the y axis.

Figure 21. Vertical force of wing designs listed in Table 2.

Figure 22. Power of wing designs listed in Table 2.
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were two designs which produced clearly superior

forces. The 55 mm wing at 22.8 Hz equipped with a

45� angle stop generated vertical forces up to 600 mgF

greater than the original wing for a given stroke angle.

The 70 mm wing at 15.7 Hz generated vertical forces up

to 650 mgF greater than the original wing for a given

stroke angle. At a stroke angle of 100�, the new designs

increased the vertical force by up to 165%, whereas the

power consumption increased by up to 399%. As

Figure 23 shows, the increase in vertical force was

accompanied by a decrease in efficiency.
The 60 mm wing with the 50 mm Kapton joint was

tested with several wing specimens, some of which were

not constructed properly. For this reason, a nonlinear

relationship exists between stroke angle and vertical

force, as well as stroke angle and power. The 70 mm

wing with the 50 mm Kapton joint initially consumed

less power than the 55 mm wing with the 50 mmKapton

joint. However, as stroke angle increased the 70 mm

design consumed more power. The drag on the wing

explains this increase in power for the largest wing.
An advantage to increasing the planform area of the

wing, rather than simply increasing the natural fre-

quency of a 50 mm wing, was a longer service life

and a smoother flapping motion. The original AFIT
wing flapping at higher frequencies had a choppy flap-

ping motion, and succumbed quickly at the passive

rotation joint. In comparison, the 65 and 70 mm

wings flapped through several full amplitude sweeps

without breaking.

Vacuum tests

To examine the effect of altering the Reynolds number

of the wing, air density tests were conducted at 85%,

70%, 55%, 25%, and 0.5% of standard atmospheric

pressure (atm). The vacuum tests took place with

additional extension cords used to attach the Nano-

17 to the rest of the experimental setup. To determine

the effect the extension cord had on data accuracy, a

single wing was tested at various amplitudes, with and

without the extension cord attached. The results indi-

cated the data values remained within 1.8% of the

values without the extension cords, provided a suffi-

cient number of tests were conducted at each test point.
To account for the inherent differences in the indi-

vidual wing specimens, each wing was first flapped at

five driving amplitudes before the vacuum pump was

engaged to compute reference values. The number of

test points was limited to five for the atmospheric test-

ing because a full amplitude sweep would sometimes

degrade the wing before it could be used for the partial

vacuum tests. Figures 24 through 26 give the vertical

force, power, and efficiency for the five partial vacuum

tests, respectively.
There was a clear pattern of vertical force increasing

at a slower rate under partial vacuum as stroke angle

was increased, with the maximum stroke angle occur-

ring at lower driving voltage amplitudes. There was

also a pattern of power consumption decreasing with

decreasing air density, due to the decrease in vertical

force production. There was no clear trend regarding

vertical force to power ratio. The relationship between

stroke angle and vertical force and power broke down

for certain test cases, such as the 70% atm and 40%

atm cases. This was due to the asymmetric flapping of

these tests. Under partial vacuum conditions, symmet-

rical flapping was impossible to achieve under certain

stroke angles. The difference between upstroke and

downstroke would vary considerably from one stroke

angle to the next. As a result, vertical force and power

did not increase in a linear fashion.

Figure 24. Vertical force vs. U of the 50 mm wing at 100% atm
and 17.3 Hz, 85% atm and 18.8 Hz, 70% atm and 18.9 Hz, 55%
atm and 16.5 Hz, 40% atm and 18.1 Hz, and 25% atm and 18.1
Hz.

Figure 23. Vertical force to power ratio of wing designs listed
in Table 2.
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Reynolds number effect was the principal reason for

these tests; however, other useful information can also

be determined from this data. For example, at altitudes

and temperatures seen in mountainous regions of the

world, the density of air can reach the air densities seen

in the partial vacuum tests. These tests indicate

decrease in density leads to a decrease in vertical

force. This degradation in performance under certain

conditions must be considered when determining the

lift requirements of an FWMAV.

Near absolute vacuum test

Tests were conducted at 4.3 Torr, which was the lowest

attainable air pressure, to determine the purely inertial

behavior of the biomimetic wing. The pressure 4.3 Torr

is equivalent to 573 Pa, or 0.57% of atmospheric pres-

sure. Figures 27 through 29 compare the forces,

moments, and power consumption of the wing operat-

ing near absolute vacuum to the same specific wing

operating at atmospheric pressure, as well as to the

baseline wing test at atmospheric pressure.
Figure 27 shows at near vacuum conditions, the 50

mm wing produces negligible cycle-averaged forces.

The vertical force would oscillate between �40 and

40 mgF, while the original wing at atmospheric condi-

tions produced vertical forces which increase linearly

from 365 to 600 mgF. The negligible cycle-averaged

forces produced by the wing under purely inertial

movement indicate all force data collected for the bio-

mimetic wing are the result of aerodynamic forces on

the wing. The data is not affected by kinematic move-

ment of the wing itself, or the movement of the vibrat-

ing piezo. The moment data in Figure 28 also shows

negligible moment production at vacuum.
The negligible forces and moments produced by the

wing and the piezo suggest future researchers can use

data collected by past researchers while utilizing new

piezo designs. The use of a piezo of differing weight or

Figure 27. Comparison of forces of the 50 mm wing at 100%
atm at 17.3 Hz (top) vs. 0.57% atm and 17.3 Hz (bottom).

Figure 25. Power vs. U of the 50 mm wing at 100% atm and
17.3 Hz, 85% atm and 18.8 Hz, 70% atm and 18.9 Hz, 55% atm
and 16.5 Hz, 40% atm and 18.1 Hz, and 25% atm and 18.1 Hz.

Figure 26. Vertical force to power ratio vs. U of the 50 mm
wing at 100% atm and 17.3 Hz, 85% atm and 18.8 Hz, 70% atm
and 18.9 Hz, 55% atm and 16.5 Hz, 40% atm and 18.1 Hz, and
25% atm and 18.1 Hz.
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dimensions will not require a significant inertial correc-
tion to previously collected force and moment data.

Figure 29 compares the power consumption of the
wing flapping at atmospheric pressure to the same wing

operating near vacuum pressure. The maximum power
consumption was 70 mW, at a stroke angle of 180�

under near vacuum conditions, while the original 50
mm wing consumed 487 mW, at a stroke angle of 150�.

The increase in power consumption with increasing

stroke angle in most of the atmospheric tests can be
attributed to the wings’ interaction with the air, rather
than an increase in the kinetic energy of the wing. At a
stroke angle of 150�, the vacuum test consumed 84.4%

less power than the wing consumed flapping at the
atmospheric pressure. Although there are small
energy savings made by decreasing the weight of the
wing, most of the power requirement is a result of over-
coming drag at atmospheric pressure.

Reynolds number

Equation (5) provides the formulation for Reynolds
number. The dynamic viscosity was calculated with
Sutherland’s Law, shown in equation (9), which calcu-

lates the viscosity of the air using the temperature in
comparison to a reference viscosity (m), reference tem-
perature (Tref), and a constant (X), which were mea-
sured in the lab before each test, and compared to

tabulated values found in Brown16

l ¼ lref
T

Tref

� �1=2 1þ X
Tref

1þ X
T

(9)

The Reynolds number varied from 73.8 for the 25%
atmospheric pressure test at an 18� stroke angle, to
3168 for the 55 mm wing flapping at 22.8 Hz at a
130� stroke angle. This variance was due to the differ-
ent air densities, characteristic lengths, and wingtip

velocities of the various test conditions. For each test
point, the Reynolds number is compared to the vertical
force. Figure 30 shows the Reynolds number data for
the original 50, 55, and 60 mm wings.

The plot shows the data of all three wings overlaps
nearly coincident with each other, indicating vertical
force linearly correlates with Reynolds number. The

overlap suggests Reynolds number can be used to
directly predict the vertical force capabilities of a wing.

Figure 31 compares the 50 mm wing behavior with

the three separate linkages. The 50 mm wing with the
50 mm linkage shows atypical behavior. This particular
wing generated lower vertical force than the 50 mm
wing with the 25 mm linkage. Although the 12.5 mm
linkage and 25 mm linkage 50 mm wings both have
overlapping data points for vertical force, the 50 mm
linkage has a shallower curve, indicating the vertical
force increases more slowly as Reynolds number
increases. This is a similar pattern as the previously

shown data, which compared the three linkage designs,

Figure 29. Power comparison of the 50 mm wing at 100% atm
at 17.3 Hz and 0.57% atm and 17.3 Hz. The power of the specific
wing flapped at 0.57% was also measured at 100% atm at five test
points to account for the variation in individual wing specimens.

Figure 28. Comparison of moments of the 50 mm wing at
100% atm at 17.3 Hz (top) and 0.57% atm and 17.3 Hz (bottom).
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wherein the 50 mm design led to degraded performance

despite a higher wingtip velocity.
Figure 32 shows the Reynolds number data for the

longer wing designs with thicker linkages. The vertical

force plot shows the same pattern with a large amount

of overlap, with the exception of the 60 mm wing. The

60 mm wing behavior can be attributed to the use of

multiple wings which operated under various flapping

frequencies, temperatures, and angles of attack.
Figure 33 shows the Reynolds number data for the

partial vacuum tests. The vertical force graph shows a

clear trend of Reynolds number and vertical force cor-

relation regardless of specific test conditions.
With the exception of the 60 mm wing with the 50 mm

thick Kapton linkage and 50 mm wing with the 50 mm
thick Kapton linkage, there is a correlation between

Reynolds number and vertical force, which indicates

that increasing the Reynolds number will lead to an

increase in wing lift production. The Reynolds number

correlates with the wing characteristics in equation (10)

Re / fR2

AR
(10)

The decrease in natural frequency associated with an

increase in wing length can be attenuated by increasing

the stiffness-to-mass ratio of the flapper joint system.

Further increasing the four-bar linkage Kapton thick-

ness from 12.5 mm to 25 mm increases the vertical force-

to-power consumption ratio of the system.

Conclusion

The research presented represents a significant contri-

bution to the understanding of the aerodynamics,

Figure 32. Reynolds number vs. vertical force of the 50–70 mm
wings and 12.5–50 lm Kapton linkages at atmospheric pressure.
The 60 mm wing with 50 lm Kapton linkage deviates from the
pattern due to multiple wings being used for the testing, some of
which were not properly constructed.

Figure 33. Reynolds number vs. vertical force at 25–100%
atmosphere.

Figure 30. Reynolds number vs. vertical force of the 50, 55, and
60 mm wings with original linkages.

Figure 31. Reynolds number vs. vertical force of the 50 mm
wing with three separate linkages.
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modeling, and design of the piezoelectric actuator
driven M. sexta inspired biomimetic wing. A six
degree of freedom force and moment balance, displace-
ment sensor, vibrometer, and three high speed cameras
operating at a 1000 Hz frame rate were used to capture
the behavior of the wing, controlled through the use of
an AFIT written MATLAB graphical interface, which
controlled the drive signal sent to the piezoelectric actu-
ator attached via a four-bar linkage to the biomimetic
wing. The goal of the testing was to further elucidate
the aerodynamics and design of a M. sexta wing by
measuring the performance of the wing in variable air
densities with varying wing spans.

The three research areas addressed were the effect of
Reynolds number on the wing design, using larger span
constant aspect ratio wings to increase total lift, and
the impact the motion of the wing, and its flap harmon-
ics, had on force measurements, compared to the
impact of purely aerodynamic forces. All three of
these research questions were answered by separately
varying the air density and characteristic length of the
wing. Tests were conducted in which the length of the
wing was increased from 50 mm to 55, 60, 65, and 70
mm. A constant aspect ratio was maintained; therefore,
only a single variable was changed for each set of tests.
Next, tests were conducted in which the air density was
indirectly altered by lowering the air pressure to 85%,
70%, 55%, 40%, 25%, and 0.57% of atmospheric
pressure, respectively.

The variable wing length tests demonstrated increasing
the characteristic length of the wings increased the verti-
cal force production up to 165% over the baseline design,
when the flapper’s mechanical drive system was strength-
ened to offset the decrease in natural frequency, which
accompanied an increase in length. Thicker Kapton in
the four-bar linkage increased the natural frequency of
the system, which when combined with the larger wings,
resulted in increased vertical force production over the
baseline 50 mm design. However, these gains were also
accompanied by an increase in power consumption
required to overcome the increased wing mass and flap-
per inertia, and associated induced drag penalty.

The tests conducted at near vacuum conditions
proved the measured forces and moments were attrib-
uted to the wing’s interaction with the air, and not
inertial from the kinetic energy of the wing’s move-
ment. Under purely inertial wing motion, the Nano-
17 force transducer measured negligible force and
moment production, while power consumption was
84.4% lower. Thus the AFIT wing has negligible iner-
tial losses compared to designs with gear driven
linkages.

The Reynolds number data collected with the vari-
able air density and characteristic length tests provided
a linear correlation between Reynolds number and

vertical force production. This data, in conjunction

with the aerodynamic coefficient and thrust results

obtained by DeLuca,4 suggest future researchers can

use the characteristic length and natural frequency of

a given wing to estimate the maximum expected verti-

cal force production, instead of constructing heuristic

wing models and performing iterative wing force gen-

eration testing, yielding a unique mission specific rapid

design/build/test capability.
Finally, the Reynolds number data collected did not

demonstrate a decisive relationship between Reynolds

number and vertical force to power consumption ratio.

There was also no relationship between wing size and

efficiency. However, it was definitively shown that the

25mm Kapton four-bar linkage yielded superior power

efficiency. Furthermore, efficiency decreased with

increasing stroke angle. This suggests the efficiency of

a FWMAV can be increased by optimizing the four-bar

linkage, yielding designs which produce adequate

forces at lower stroke angles.

Recommendations

This research effort was limited by the fact the driving

design goal was to increase vertical force production by

increasing the wing planform area and length in a con-

stant ratio, and then subsequently increase the Kapton

thickness in the four-bar linkage to achieve a dynamic

stiffness necessary to maintain a natural frequency

which produces increased force. Although successful,

the undesirable side-effects of a decreased maximum

stroke angle, and lower power efficiency were realized.

Future research should take a holistic review of the

several aspects of the flapper mechanism to simulta-

neously maximize wing area and natural frequency,

while also minimizing weight and power consumption.

The wing can be further improved by changing the

cross-sectional geometry of the veins, changing the

aspect ratio, using stiffer carbon fiber, and optimizing

the passive rotation joint and angle stops. The four-

bar linkage can be further improved by optimizing

the Kapton thickness and the length of the L3

joint. The piezo can be optimized by changing the

length and the cross sectional geometry, and using a

less dense material. A system level optimization effort

will provide increased performance for any FWMAV.

Furthermore, conducting a Reynolds number sweep

by modifying the aspect ratio of the wing will provide

a final and complete look at the influence Reynolds

number has on the wing. If the correlation between

Reynolds number and vertical force persists as func-

tion of varying aspect ratio, this will provide another

opportunity to model predictable wing performance.
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Appendix

Notation

A driving amplitude voltage
AR aspect ratio
Eh Young’s modulus
f frequency

keq equivalent stiffness
kh rotational stiffness
lh rotation joint length
L characteristic length

meq equivalent mass
R wing length
R2 wing length (to measure wingtip velocity)
Re Reynolds number
th rotation joint thickness
T transmission ratio
V wingtip velocity
wh rotation joint width
a angle of attack
b stroke plane angle
g bias
h elevation angle
l air dynamic viscosity
q air density
/ wing position angle
U stroke angle
x flapping frequency
xn natural frequency
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