428 research outputs found

    L'héritage antiochien de l'église maronite

    Get PDF

    Genetic and molecular basis of botrydial biosynthesis: connecting cytochrome P450-encoding genes to biosynthetic intermediates

    Get PDF
    Over two hundred species of plants can be infected by the phytopathogenic fungus Botrytis cinerea under a range of different environmental conditions. In response to these, the fungus produces unique terpenoid and polyketide metabolites. Parts of the plants may be killed by the phytotoxin botrydial, enabling the fungus to feed on the dead cells. In this paper, we describe the genetic and molecular basis of botrydial biosynthesis and the function of the five genes of the genome of B. cinerea that together constitute the botrydial biosynthetic gene cluster. Genes BcBOT3 and BcBOT4, encoding two cytochrome P450 monooxygenases, were inactivated by homologous recombination and were shown to catalyze regio- and stereospecific hydroxylations at the carbons C-10 and C-4, respectively, of the presilphiperfolan-8β-ol skeleton. The null mutants, bcbot3Δ and bcbot4Δ, accumulated key intermediates in the botrydial biosynthesis enabling the complete genetic and molecular basis of the botrydial biosynthetic pathway to be established. Furthermore, the bcbot4Δ mutant overproduced a significant number of polyketides, which included, in addition to known botcinins, botrylactones and cinbotolide A, two new botrylactones and two new cinbotolides, cinbotolides B and C

    Mutation detection using ENDO1: Application to disease diagnostics in humans and TILLING and Eco-TILLING in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA by a mismatch-specific endonuclease at mismatch sites and the analysis of the digestion product on a DNA sequencer. Important limitations of these methods are the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in pool of DNA, the cost of the analysis and the ease by which the technique could be implemented in a standard molecular biology laboratory.</p> <p>Results</p> <p>The co-agroinfiltration of ENDO1 and p19 constructs into <it>N. benthamiana </it>leaves allowed high level of transient expression of a mismatch-specific and sensitive endonuclease, ENDO1 from <it>Arabidopsis thaliana</it>. We demonstrate the broad range of uses of the produced enzyme in detection of mutations. In human, we report the diagnosis of the G1691A mutation in <it>Leiden factor-V </it>gene associated with venous thrombosis and the fingerprinting of HIV-1 quasispecies in patients subjected to antiretroviral treatments. In plants, we report the use of ENDO1 system for detection of mutant alleles of <it>Retinoblastoma</it>-<it>related </it>gene by TILLING in <it>Pisum sativum </it>and discovery of natural sequence variations by Eco-TILLING in <it>Arabidopsis thaliana</it>.</p> <p>Conclusion</p> <p>We introduce a cost-effective tool based on a simplified purification protocol of a mismatch-specific and sensitive endonuclease, ENDO1. Especially, we report the successful applications of ENDO1 in mutation diagnostics in humans, fingerprinting of complex population of viruses, and in TILLING and Eco-TILLING in plants.</p

    The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6

    Get PDF
    Botrydial (BOT) is a non-host specific phytotoxin produced by the polyphagous phytopathogenic fungus Botrytis cinerea. The genomic region of the BOT biosynthetic gene cluster was investigated and revealed two additional genes named Bcbot6 and Bcbot7. Analysis revealed that the G + C/A + T-equilibrated regions that contain the Bcbot genes alternate with A + T-rich regions made of relics of transposable elements that have undergone repeat-induced point mutations (RIP). Furthermore, BcBot6, a Zn(II)2Cys6 putative transcription factor was identified as a nuclear protein and the major positive regulator of BOT biosynthesis. In addition, the phenotype of the DBcbot6 mutant indicated that BcBot6 and therefore BOT are dispensable for the development, pathogenicity and response to abiotic stresses in the B. cinerea strain B05.10. Finally, our data revealed that B. pseudocinerea, that is also polyphagous and lives in sympatry with B. cinerea, lacks the ability to produce BOT. Identification of BcBot6 as the major regulator of BOT synthesis is the first step towards a comprehensive understanding of the complete regulation network of BOT synthesis and of its ecological role in the B. cinerea life cycle

    A Shared Biosynthetic Pathway for Botcinins and Botrylactones Revealed through Gene Deletions

    Get PDF
    Isotopic labelling experiments and the study of mutants with disrupted genes encoding botcinic acid have revealed a common link in the biosynthesis of the polyketide toxins excreted by Botrytis cinerea: botcinins and botrylactones. Furthermore, the results reported here shed light on the origin of the starter unit, thereby solving a long-standing mystery in the biosynthesis of botcinins

    <em>Tendril-less</em> regulates tendril formation in pea leaves

    Get PDF
    Tendrils are contact-sensitive, filamentous organs that permit climbing plants to tether to their taller neighbors. Tendrilled legume species are grown as field crops, where the tendrils contribute to the physical support of the crop prior to harvest. The homeotic tendril-less (tl) mutation in garden pea (Pisum sativum), identified almost a century ago, transforms tendrils into leaflets. In this study, we used a systematic marker screen of fast neutron–generated tl deletion mutants to identify Tl as a Class I homeodomain leucine zipper (HDZIP) transcription factor. We confirmed the tendril-less phenotype as loss of function by targeting induced local lesions in genomes (TILLING) in garden pea and by analysis of the tendril-less phenotype of the t mutant in sweet pea (Lathyrus odoratus). The conversion of tendrils into leaflets in both mutants demonstrates that the pea tendril is a modified leaflet, inhibited from completing laminar development by Tl. We provide evidence to show that lamina inhibition requires Unifoliata/LEAFY-mediated Tl expression in organs emerging in the distal region of the leaf primordium. Phylogenetic analyses show that Tl is an unusual Class I HDZIP protein and that tendrils evolved either once or twice in Papilionoid legumes. We suggest that tendrils arose in the Fabeae clade of Papilionoid legumes through acquisition of the Tl gene

    Genetic Evidence for a Link Between Glycolysis and DNA Replication

    Get PDF
    BACKGROUND: A challenging goal in biology is to understand how the principal cellular functions are integrated so that cells achieve viability and optimal fitness in a wide range of nutritional conditions. METHODOLOGY/PRINCIPAL FINDINGS: We report here a tight link between glycolysis and DNA synthesis. The link, discovered during an analysis of suppressors of thermosensitive replication mutants in bacterium Bacillus subtilis, is very strong as some metabolic alterations fully restore viability to replication mutants in which a lethal arrest of DNA synthesis otherwise occurs at a high, restrictive, temperature. Full restoration of viability by such alterations was limited to cells with mutations in three elongation factors (the lagging strand DnaE polymerase, the primase and the helicase) out of a large set of thermosensitive mutants affected in most of the replication proteins. Restoration of viability resulted, at least in part, from maintenance of replication protein activity at high temperature. Physiological studies suggested that this restoration depended on the activity of the three-carbon part of the glycolysis/gluconeogenesis pathway and occurred in both glycolytic and gluconeogenic regimens. Restoration took place abruptly over a narrow range of expression of genes in the three-carbon part of glycolysis. However, the absolute value of this range varied greatly with the allele in question. Finally, restoration of cell viability did not appear to be the result of a decrease in growth rate or an induction of major stress responses. CONCLUSIONS/SIGNIFICANCE: Our findings provide the first evidence for a genetic system that connects DNA chain elongation to glycolysis. Its role may be to modulate some aspect of DNA synthesis in response to the energy provided by the environment and the underlying mechanism is discussed. It is proposed that related systems are ubiquitous

    EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Translation initiation factors of the 4E and 4G protein families mediate resistance to several RNA plant viruses in the natural diversity of crops. Particularly, a single point mutation in melon eukaryotic translation initiation factor 4E (eIF4E) controls resistance to <it>Melon necrotic spot virus </it>(MNSV) in melon. Identification of allelic variants within natural populations by EcoTILLING has become a rapid genotype discovery method.</p> <p>Results</p> <p>A collection of <it>Cucumis </it>spp. was characterised for susceptibility to MNSV and <it>Cucumber vein yellowing virus </it>(CVYV) and used for the implementation of EcoTILLING to identify new allelic variants of <it>eIF4E</it>. A high conservation of <it>eIF4E </it>exonic regions was found, with six polymorphic sites identified out of EcoTILLING 113 accessions. Sequencing of regions surrounding polymorphisms revealed that all of them corresponded to silent nucleotide changes and just one to a non-silent change correlating with MNSV resistance. Except for the MNSV case, no correlation was found between variation of eIF4E and virus resistance, suggesting the implication of different and/or additional genes in previously identified resistance phenotypes. We have also characterized a new allele of <it>eIF4E </it>from <it>Cucumis zeyheri</it>, a wild relative of melon. Functional analyses suggested that this new <it>eIF4E </it>allele might be responsible for resistance to MNSV.</p> <p>Conclusion</p> <p>This study shows the applicability of EcoTILLING in <it>Cucumis </it>spp., but given the conservation of eIF4E, new candidate genes should probably be considered to identify new sources of resistance to plant viruses. Part of the methodology described here could alternatively be used in TILLING experiments that serve to generate new <it>eIF4E </it>alleles.</p

    Environmental and Socio-Economic Impact of Deep Geothermal Energy, an Upper Rhine Graben Perspective

    Get PDF
    The Upper Rhine Graben is a region renowned in Europe for the exploitation and development of geothermal energy with projects in France, Germany and Switzerland. In the last 20 years, numerous seismic events have been felt by local population triggering social concerns that have been addressed at different levels (state regulation, technical adaptation of projects and communication). Indeed, geothermal projects need a high level of acceptance by inhabitants in the surrounding area. In this regard, the local socio-economic impact is a crucial factor in social acceptance. Nevertheless, this energy resource has many advantages such as competitive heat prices and low environmental impacts, quantified by Life Cycle Analysis. This approach is also completed by continuous environmental monitoring. Moreover, additional valorization of geothermal water through its use for low temperature heating or recovery of mineral resources are ways of providing additional benefits to the local community. This chapter is dedicated to present the environmental and socio-economic impacts of two operational EGS projects (Soultz-sous-Forêts and Rittershoffen) located in Northern Alsace (France) producing geothermal electricity and heat in a rural area
    • …
    corecore