763 research outputs found

    Magnetic Fluctuations, Precursor Phenomena and Phase Transition in MnSi under Magnetic Field

    Get PDF
    The reference chiral helimagnet MnSi is the first system where skyrmion lattice correlations have been reported. At zero magnetic field the transition at TCT_C to the helimagnetic state is of first order. Above TCT_C, in a region dominated by precursor phenomena, neutron scattering shows the build up of strong chiral fluctuating correlations over the surface of a sphere with radius 2π/2\pi/\ell, where \ell is the pitch of the helix. It has been suggested that these fluctuating correlations drive the helical transition to first order following a scenario proposed by Brazovskii for liquid crystals. We present a comprehensive neutron scattering study under magnetic fields, which provides evidence that this is not the case. The sharp first order transition persists for magnetic fields up to 0.4 T whereas the fluctuating correlations weaken and start to concentrate along the field direction already above 0.2 T. Our results thus disconnect the first order nature of the transition from the precursor fluctuating correlations. They also show no indication for a tricritical point, where the first order transition crosses over to second order with increasing magnetic field. In this light, the nature of the first order helical transition and the precursor phenomena above TCT_C, both of general relevance to chiral magnetism, remain an open question

    Metastases to the breast

    Get PDF

    Proteomic identification of heterogeneous nuclear ribonucleoprotein L as a novel component of SLM/Sam68 nuclear bodies

    Get PDF
    Background: Active pre-mRNA splicing occurs co-transcriptionally, and takes place throughout the nucleoplasm of eukaryotic cells. Splicing decisions are controlled by networks of nuclear RNA-binding proteins and their target sequences, sometimes in response to signalling pathways. Sam68 (Src-associated in mitosis 68 kDa) is the prototypic member of the STAR (Signal Transduction and Activation of RNA) family of RNA-binding proteins, which regulate splicing in response to signalling cascades. Nuclear Sam68 protein is concentrated within subnuclear organelles called SLM/Sam68 Nuclear Bodies (SNBs), which also contain some other splicing regulators, signalling components and nucleic acids. Results: We used proteomics to search for the major interacting protein partners of nuclear Sam68. In addition to Sam68 itself and known Sam68-associated proteins (heterogeneous nuclear ribonucleoproteins hnRNP A1, A2/B1 and G), we identified hnRNP L as a novel Sam68-interacting protein partner. hnRNP L protein was predominantly present within small nuclear protein complexes approximating to the expected size of monomers and dimers, and was quantitatively associated with nucleic acids. hnRNP L spatially co-localised with Sam68 as a novel component of SNBs and was also observed within the general nucleoplasm. Localisation within SNBs was highly specific to hnRNP L and was not shared by the closely-related hnRNP LL protein, nor any of the other Sam68-interacting proteins we identified by proteomics. The interaction between Sam68 and hnRNP L proteins was observed in a cell line which exhibits low frequency of SNBs suggesting that this association also takes place outside SNBs. Although ectopic expression of hnRNP L and Sam68 proteins independently affected splicing of CD44 variable exon v5 and TJP1 exon 20 minigenes, these proteins did not, however, co-operate with each other in splicing regulation of these target exons. Conclusion: Here we identify hnRNP L as a novel SNB component. We show that, compared with other identified Sam68-associated hnRNP proteins and hnRNP LL, this co-localisation within SNBs is specific to hnRNP L. Our data suggest that the novel Sam68-hnRNP L protein interaction may have a distinct role within SNBs

    Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of Fe1x_{1-x}Cox_xSi

    Full text link
    We present a comprehensive Small Angle Neutron Scattering (SANS) and Neutron Spin Echo Spectroscopy (NSE) study of the structural and dynamical aspects of the helimagnetic transition in Fe1x_{1-x}Cox_xSi with xx = 0.30. In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1x_{1-x}Cox_xSi is gradual and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1x_{1-x}Cox_xSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets

    pH-Dependent Chiral Recognition of D- and L-Arginine Derived Polyamidoamino Acids by Self-assembled Sodium Deoxycholate

    Get PDF
    D- and L-arginine-based polyamidoamino acids, called D- and L-ARGO7, retain the chirality and acid/base properties of the parent -amino acids and show pH-dependent self-structuring in water. The ability of the ARGO7 chiral isomers to selectively interact with chiral biomolecules and/or surfaces was studied by choosing sodium deoxycholate (NaDC) as a model chiral biomolecule for its ability to self-assembly into globular micelles, showing enantio-selectivity. To this purpose, mixtures of NaDC with D-, L- or D,L-ARGO7, respectively, in water were analysed by circular dichroism (CD) spectroscopy and small-angle neutron scattering (SANS) at different levels of acidity expressed in terms of pD and concentrations. Differences in the CD spectra indicated chiral discrimination for NaDC/ARGO7 mixtures in the gel phase (pD 7.30) but not in the solution phase (pD 9.06). SANS measurements confirmed large scale structural perturbation induced by this chiral discrimination in the gel phase yet no modulation of the structure in the solution phase. Together, these techniques shed light on the mechanism by which ARGO7 stereoisomers modify the morphology of NaDC micelles as a function of pH. This work demonstrates chirality-dependent interactions that drive structural evolution and phase behaviour of NaDC, opening the way for designing novel smart drug delivery systems

    The splicing landscape is globally reprogrammed during male meiosis

    Get PDF
    Meiosis requires conserved transcriptional changes, but it is not known whether there is a corresponding set of RNA splicing switches. Here, we used RNAseq of mouse testis to identify changes associated with the progression from mitotic spermatogonia to meiotic spermatocytes. We identified ∼150 splicing switches, most of which affect conserved protein-coding exons. The expression of many key splicing regulators changed in the course of meiosis, including downregulation of polypyrimidine tract binding protein (PTBP1) and heterogeneous nuclear RNP A1, and upregulation of nPTB, Tra2β, muscleblind, CELF proteins, Sam68 and T-STAR. The sequences near the regulated exons were significantly enriched in target sites for PTB, Tra2β and STAR proteins. Reporter minigene experiments investigating representative exons in transfected cells showed that PTB binding sites were critical for splicing of a cassette exon in the Ralgps2 mRNA and a shift in alternative 5′ splice site usage in the Bptf mRNA. We speculate that nPTB might functionally replace PTBP1 during meiosis for some target exons, with changes in the expression of other splicing factors helping to establish meiotic splicing patterns. Our data suggest that there are substantial changes in the determinants and patterns of alternative splicing in the mitotic-to-meiotic transition of the germ cell cycle

    Evidence for nonmonotonic magnetic field penetration in a type-I superconductor

    Full text link
    Polarized neutron reflectometry (PNR) provides evidence that nonlocal electrodynamics governs the magnetic field penetration in an extreme low-k superconductor. The sample is an indium film with a large elastic mean free path (11 mkm) deposited on a silicon oxide wafer. It is shown that PNR can resolve the difference between the reflected neutron spin asymmetries predicted by the local and nonlocal theories of superconductivity. The experimental data support the nonlocal theory, which predicts a nonmonotonic decay of the magnetic field.Comment: 5 pages, 4 figures, LaTex, corrected typos and figure
    corecore