896 research outputs found

    Multiyear increases in dissolved organic matter inventories at station ALOHA in the North Pacific Subtropical Gyre

    Get PDF
    The inventories and dynamics of dissolved organic matter (DOM) in the surface water at Station ALOHA were analyzed from the Hawaii Ocean Time-series (HOT) data set for the period 1989-1999. Euphotic zone, depth-integrated (0-175 m) concentrations of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) were temporally variable. In particular, during the period 1993-1999, concentrations of DOC and DON increased while inventories of DOP remained unchanged. DOC inventories increased by 303 mmol C m(-2) yr(-1), a value equivalent to approximately 2% of measured primary production (C-14 method) at this site. DON increased at 11 mmol N m(-2) yr(-1), resulting in a mean molar DOC : DON ratio of 27.5 for the accumulated DOM. Accumulation of DOC and DON without corresponding accumulation of DOP resulted in changes to the bulk organic C : N : P stoichiometry; bulk DOC : DOP ratios increased 16% and DON: DOP ratios increased by 17%. These results indicate that a small fraction of the annually produced organic matter escaped biological utilization on time scales of months to years. More importantly, the accumulated DOM inventories grew progressively enriched in C and N relative to P. Fundamental changes in the North Pacific Subtropical Gyre (NPSG) habitat appear to have altered microbial processes that regulate organic matter fluxes. Considered together, the long-term increases in DOC and DON inventories are consistent with previous observations, indicating that a recent reorganization of plankton community dynamics may have altered organic matter cycling in this ecosystem

    Temporal variability of nitrogen fixation and particulate nitrogen export at Station ALOHA

    Get PDF
    We present nearly 9 yrs (June 2005–December 2013) of measurements of upper‐ocean (0 m to 125 m) dinitrogen (N2) fixation rates, coupled with particulate nitrogen (PN) export at 150 m, from Station ALOHA (22° 45â€ČN, 158°W) in the North Pacific Subtropical Gyre. Between June 2005 and June 2012, N2 fixation rates were measured based on adding the 15N2 tracer as a gas bubble. Beginning in August 2012, 15N2 was first dissolved into filtered seawater and the 15N2‐enriched water was subsequently added to N2 fixation incubations. Direct comparisons between methodologies revealed a robust relationship, with the addition of 15N2‐enriched seawater resulting in twofold greater depth‐integrated rates than those derived from adding a 15N2 gas bubble. Based on this relationship, we corrected the initial period of measurements, and the resulting rates of N2 fixation averaged 230 ± 136 ÎŒmol N m−2 d−1 for the full time series (n = 71). Analysis of the 15N isotopic composition of sinking PN, together with an isotope mass balance model, revealed that N2 fixation supported 26–47% of PN export during calendar years 2006–2013. The N export derived from these fractional contributions and measured N2 fixation rates ranged between 502 and 919 ÎŒmol N m−2 d−1, which are equivalent to rates of net community production (NCP) of 1.5 to 2.7 mol C m−2 yr−1, consistent with previous independent estimates of NCP at this site

    Population-Based Precision Cancer Screening: A Symposium on Evidence, Epidemiology, and Next Steps

    Get PDF
    Precision medicine, an emerging approach for disease treatment that takes into account individual variability in genes, environment, and lifestyle, is under consideration for preventive interventions, including cancer screening. On September 29, 2015, the National Cancer Institute sponsored a symposium entitled “Precision Cancer Screening in the General Population: Evidence, Epidemiology, and Next Steps”. The goal was two-fold: to share current information on the evidence, practices, and challenges surrounding precision screening for breast, cervical, colorectal, lung, and prostate cancers, and to allow for in-depth discussion among experts in relevant fields regarding how epidemiology and other population sciences can be used to generate evidence to inform precision screening strategies. Attendees concluded that the strength of evidence for efficacy and effectiveness of precision strategies varies by cancer site, that no one research strategy or methodology would be able or appropriate to address the many knowledge gaps in precision screening, and that issues surrounding implementation must be researched as well. Additional discussion needs to occur to identify the high priority research areas in precision cancer screening for pertinent organs and to gather the necessary evidence to determine whether further implementation of precision cancer screening strategies in the general population would be feasible and beneficial

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice

    Get PDF
    Dravet syndrome (DS) is a severe epileptic encephalopathy caused mainly by heterozygous loss-of-function mutations of the SCN1A gene, indicating haploinsufficiency as the pathogenic mechanism. Here we tested whether catalytically dead Cas9 (dCas9)-mediated Scn1a gene activation can rescue Scn1a haploinsufficiency in a mouse DS model and restore physiological levels of its gene product, the Nav1.1 voltage-gated sodium channel. We screened single guide RNAs (sgRNAs) for their ability to stimulate Scn1a transcription in association with the dCas9 activation system. We identified a specific sgRNA that increases Scn1a gene expression levels in cell lines and primary neurons with high specificity. Nav1.1 protein levels were augmented, as was the ability of wild-type immature GABAergic interneurons to fire action potentials. A similar enhancement of Scn1a transcription was achieved in mature DS interneurons, rescuing their ability to fire. To test the therapeutic potential of this approach, we delivered the Scn1a-dCas9 activation system to DS pups using adeno-associated viruses. Parvalbumin interneurons recovered their firing ability, and febrile seizures were significantly attenuated. Our results pave the way for exploiting dCas9-based gene activation as an effective and targeted approach to DS and other disorders resulting from altered gene dosage

    Trends over 5 Decades in U.S. Occupation-Related Physical Activity and Their Associations with Obesity

    Get PDF
    BACKGROUND: The true causes of the obesity epidemic are not well understood and there are few longitudinal population-based data published examining this issue. The objective of this analysis was to examine trends in occupational physical activity during the past 5 decades and explore how these trends relate to concurrent changes in body weight in the U.S. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of energy expenditure for occupations in U.S. private industry since 1960 using data from the U.S. Bureau of Labor Statistics. Mean body weight was derived from the U.S. National Health and Nutrition Examination Surveys (NHANES). In the early 1960's almost half the jobs in private industry in the U.S. required at least moderate intensity physical activity whereas now less than 20% demand this level of energy expenditure. Since 1960 the estimated mean daily energy expenditure due to work related physical activity has dropped by more than 100 calories in both women and men. Energy balance model predicted weights based on change in occupation-related daily energy expenditure since 1960 for each NHANES examination period closely matched the actual change in weight for 40-50 year old men and women. For example from 1960-62 to 2003-06 we estimated that the occupation-related daily energy expenditure decreased by 142 calories in men. Given a baseline weight of 76.9 kg in 1960-02, we estimated that a 142 calories reduction would result in an increase in mean weight to 89.7 kg, which closely matched the mean NHANES weight of 91.8 kg in 2003-06. The results were similar for women. CONCLUSION: Over the last 50 years in the U.S. we estimate that daily occupation-related energy expenditure has decreased by more than 100 calories, and this reduction in energy expenditure accounts for a significant portion of the increase in mean U.S. body weights for women and men

    Niche as a determinant of word fate in online groups

    Get PDF
    Patterns of word use both reflect and influence a myriad of human activities and interactions. Like other entities that are reproduced and evolve, words rise or decline depending upon a complex interplay between {their intrinsic properties and the environments in which they function}. Using Internet discussion communities as model systems, we define the concept of a word niche as the relationship between the word and the characteristic features of the environments in which it is used. We develop a method to quantify two important aspects of the size of the word niche: the range of individuals using the word and the range of topics it is used to discuss. Controlling for word frequency, we show that these aspects of the word niche are strong determinants of changes in word frequency. Previous studies have already indicated that word frequency itself is a correlate of word success at historical time scales. Our analysis of changes in word frequencies over time reveals that the relative sizes of word niches are far more important than word frequencies in the dynamics of the entire vocabulary at shorter time scales, as the language adapts to new concepts and social groupings. We also distinguish endogenous versus exogenous factors as additional contributors to the fates of words, and demonstrate the force of this distinction in the rise of novel words. Our results indicate that short-term nonstationarity in word statistics is strongly driven by individual proclivities, including inclinations to provide novel information and to project a distinctive social identity.Comment: Supporting Information is available here: http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0019009.s00

    Recent evolution of the NF-ÎșB and inflammasome regulating protein POP2 in primates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrin-only protein 2 (POP2) is a small human protein comprised solely of a pyrin domain that inhibits NF-ÎșB p65/RelA and blocks the formation of functional IL-1ÎČ processing inflammasomes. Pyrin proteins are abundant in mammals and several, like POP2, have been linked to activation or regulation of inflammatory processes. Because <it>POP2 </it>knockout mice would help probe the biological role of inflammatory regulation, we thus considered whether <it>POP2 </it>is common in the mammalian lineage.</p> <p>Results</p> <p>BLAST searches revealed that <it>POP2 </it>is absent from the available genomes of not only mice and rats, but those of other domestic mammals and New World monkeys as well. <it>POP2 </it>is however present in the genome of the primate species most closely related to humans including <it>Pan troglodytes </it>(chimpanzees), <it>Macaca mulatta </it>(rhesus macaques) and others. Interestingly, chimpanzee POP2 is identical to human POP2 (huPOP2) at both the DNA and protein level. Macaque POP2 (mqPOP2), although highly conserved is not identical to the human sequence; however, both functions of the human protein are retained. Further, <it>POP2 </it>appears to have arisen in the mammalian genome relatively recently (~25 mya) and likely derived from retrogene insertion of <it>NLRP2</it>.</p> <p>Conclusion</p> <p>Our findings support the hypothesis that the NLR loci of mammals, encoding proteins involved in innate and adaptive immunity as well as mammalian development, have been subject to recent and strong selective pressures. Since POP2 is capable of regulating signaling events and processes linked to innate immunity and inflammation, its presence in the genomes of hominids and Old World primates further suggests that additional regulation of these signals is important in these species.</p

    Novel Regulation of CCL2 Gene Expression by Murine LITAF and STAT6B

    Get PDF
    Inflammation is a multifaceted process: beneficial as a defense mechanism but also detrimental depending on its severity and duration. At the site of injury, inflammatory cells are activated by a cascade of mediators, one of which is LITAF, a transcription regulator known to upregulate TNF-α. We previously showed that human LITAF forms a complex with human STAT6B, which translocates into the nucleus to upregulate cytokine transcription. To dissect the molecular implications of this complex, a murine model was developed and interactions between mouse STAT6B (mSTAT6B) and mouse LITAF (mLITAF) were analyzed. Both mLITAF and mSTAT6B expression were MyD88- and TLR ligand-dependent. Furthermore, mLITAF was found to mediate LPS-induced CCL2 gene transcription with the cooperation of mSTAT6B leading to CCL2 protein expression. In LITAF-deficient mice, mLITAF-mediated CCL2 production in macrophages was significantly reduced compared to the wild-type control animals. Mice knockdown for mSTAT6B by 6BsiRNA1 tail vein injection resulted in a decrease in serum TNF-α and CCL2 production. mLITAF/mSTAT6B complex is proposed to play a role in LPS-induced CCL2 expression and possibly other cytokines

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
    • 

    corecore