842 research outputs found
Effects of Transport Delays of Manual Control System Performance
Throughput or transport delays in manual control systems can cause degraded performance and lead to potentially unstable operation. With the expanding use of digital processors, throughput delays can occur in manual control systems in a variety of ways such as in digital flight control systems in real aircraft, and in equation of motion computers and computer generated images in simulators. Research has shown the degrading effect of throughput delays on subjective opinion and system performance and dynamic response. A generic manual control system model is used to provide a relatively simple analysis of and explanation for the effects of various types of delays. The consequence of throughput delays of some simple system architectures is also discussed
The effects of bedrest on crew performance during simulated shuttle reentry. Volume 2: Control task performance
A simplified space shuttle reentry simulation performed on the NASA Ames Research Center Centrifuge is described. Anticipating potentially deleterious effects of physiological deconditioning from orbital living (simulated here by 10 days of enforced bedrest) upon a shuttle pilot's ability to manually control his aircraft (should that be necessary in an emergency) a comprehensive battery of measurements was made roughly every 1/2 minute on eight military pilot subjects, over two 20-minute reentry Gz vs. time profiles, one peaking at 2 Gz and the other at 3 Gz. Alternate runs were made without and with g-suits to test the help or interference offered by such protective devices to manual control performance. A very demanding two-axis control task was employed, with a subcritical instability in the pitch axis to force a high attentional demand and a severe loss-of-control penalty. The results show that pilots experienced in high Gz flying can easily handle the shuttle manual control task during 2 Gz or 3 Gz reentry profiles, provided the degree of physiological deconditioning is no more than induced by these 10 days of enforced bedrest
Archive data base and handling system for the Orbiter flying qualities experiment program
The OFQ archives data base and handling system assembled as part of the Orbiter Flying Qualities (OFQ) research of the Orbiter Experiments Program (EOX) are described. The purpose of the OFQ archives is to preserve and document shuttle flight data relevant to vehicle dynamics, flight control, and flying qualities in a form that permits maximum use for qualified users. In their complete form, the OFQ archives contain descriptive text (general information about the flight, signal descriptions and units) as well as numerical time history data. Since the shuttle program is so complex, the official data base contains thousands of signals and very complex entries are required to obtain data. The OFQ archives are intended to provide flight phase oriented data subsets with relevant signals which are easily identified for flying qualities research
Analyses of shuttle orbiter approach and landing conditions
A study of one shuttle orbiter approach and landing conditions are summarized. Causes of observed PIO like flight deficiencies are identified and potential cures are examined. Closed loop pilot/vehicle analyses are described and path/attitude stability boundaries defined. The latter novel technique proved of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. The analytical results are shown to be consistent with flight test and fixed base simulation. Conclusions are drawn relating to possible improvements of the shuttle orbiter/digital flight control system
Weak decay processes in pre-supernova core evolution within the gross theory
The beta decay and electron capture rates are of fundamental importance in the evolution of massive stars in a pre-supernova core. The beta decay process gives its contribution by emitting electrons in the plasma of the stellar core, thereby increasing pressure, which in turn increases the temperature. From the other side, the electron capture removes free electrons from the plasma of the star core contributing to the reduction of pressure and temperature. In this work we calculate the beta decay and electron capture rates in stellar conditions for 63 nuclei of relevance in the pre-supernova stage, employing Gross Theory as the nuclear model. We use the abundances calculated with the Saha equations in the hypothesis of nuclear statistical equilibrium to evaluate the time derivative of the fraction of electrons. Our results are compared with other evaluations available in the literature. They have shown to be one order less or equal than the calculated within other models. Our results indicate that these differences may influence the evolution of the star in the later stages of pre-supernova. © 2014. The American Astronomical Society. All rights reserved..Fil: Ferreira, R. C.. Universidade Estadual Do Sudoeste Da BahĂa; BrasilFil: Dimarco, A. J.. Universidade Estadual de Santa Cruz, BahĂa, Brasil; BrasilFil: Samana, Arturo Rodolfo. Universidade Estadual de Santa Cruz, BahĂa, Brasil; BrasilFil: Barbero, CĂ©sar Alberto. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de FĂsica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂsica La Plata; Argentin
The Moment Guided Monte Carlo method for the Boltzmann equation
In this work we propose a generalization of the Moment Guided Monte Carlo
method developed in [11]. This approach permits to reduce the variance of the
particle methods through a matching with a set of suitable macroscopic moment
equations. In order to guarantee that the moment equations provide the correct
solutions, they are coupled to the kinetic equation through a non equilibrium
term. Here, at the contrary to the previous work in which we considered the
simplified BGK operator, we deal with the full Boltzmann operator. Moreover, we
introduce an hybrid setting which permits to entirely remove the resolution of
the kinetic equation in the limit of infinite number of collisions and to
consider only the solution of the compressible Euler equation. This
modification additionally reduce the statistical error with respect to our
previous work and permits to perform simulations of non equilibrium gases using
only a few number of particles. We show at the end of the paper several
numerical tests which prove the efficiency and the low level of numerical noise
of the method.Comment: arXiv admin note: text overlap with arXiv:0908.026
A coupled physical-biological model of the Northern Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability
The Texas-Louisiana shelf in the Northern Gulf of Mexico receives large inputs of nutrients and freshwater from the Mississippi/Atchafalaya River system. The nutrients stimulate high rates of primary production in the river plume, which contributes to the development of a large and recurring hypoxic area in summer, but the mechanistic links between hypoxia and river discharge of freshwater and nutrients are complex as the accumulation and vertical export of organic matter, the establishment and maintenance of vertical stratification, and the microbial degradation of organic matter are controlled by a non-linear interplay of factors. Unraveling these interactions will have to rely on a combination of observations and models. Here we present results from a realistic, 3-dimensional, physical-biological model with focus on a quantification of nutrient-stimulated phytoplankton growth, its variability and the fate of this organic matter. We demonstrate that the model realistically reproduces many features of observed nitrate and phytoplankton dynamics including observed property distributions and rates. We then contrast the environmental factors and phytoplankton source and sink terms characteristic of three model subregions that represent an ecological gradient from eutrophic to oligotrophic conditions. We analyze specifically the reasons behind the counterintuitive observation that primary production in the light-limited plume region near the Mississippi River delta is positively correlated with river nutrient input, and find that, while primary production and phytoplankton biomass are positively correlated with nutrient load, phytoplankton growth rate is not. This suggests that accumulation of biomass in this region is not primarily controlled bottom up by nutrient-stimulation, but top down by systematic differences in the loss processes
Multivariable statistical regression models of the areal extent of hypoxia over the Texas-Louisiana continental shelf
Observations of the areal extent of seasonal hypoxia over the Texas-Louisiana continental shelf from 1985 to 2010 are correlated with a variety of physical and biogeochemical forcing mechanisms. Significant correlation is found between hypoxic area and both nitrogen load (r(2) = 0.24) and east-west wind speed (r(2) = 0.16). There is also a significant increasing trend in the areal extent of hypoxia in time; a linearly increasing trend over the entire record (r(2) = 0.17), a step increase in area for the years 1994 and beyond (r(2) = 0.21), and a step increase for 1993 and beyond (r(2) = 0.29) were all found to be significantly correlated with area. The year 1988, often included in other studies, was found to be a statistical outlier, in that the statistical regression properties are strongly modified when this year is included. The exclusion of any other year does not have as great an effect as excluding 1988 from the record. The year 1989 is also excluded, as this year had no full shelf survey, for a total of 24 years of data for the record. Multivariable regression models using all possible combinations of the forcing variables considered were calculated. The best performing models included east-west wind, either a linear trend in time or step in time (1994 and beyond), and either nitrogen load or river discharge combined with nitrogen concentration. The range of adjusted correlation coefficients ranged from r(2) = 0.47 to 0.67. The best model (east-west wind, a step increase in time 1994 and beyond, river discharge, and nitrogen concentration) has a standard error of 3008 km(2)
Effects of a 500-Mile Backpacking Hike on the Performance of a Competitive Powerlifter
The purpose of this study was to evaluate the effects of a long-distance backpacking trip and a high protein diet on body composition, strength, power, and aerobic performance. A single participant (male, aged 29 years) hiked 34 days on the Colorado Trail. Dependent variables were assessed pre-hike and post-hike and included body mass, body fat percentage, bone mineral density, maximum oxygen consumption (VO2max), resting metabolic rate (RMR), total cholesterol, triglycerides, high density lipoprotein (HDL), low density lipoprotein (LDL). Cardiovascular dependent variables included resting heart rate, systolic blood pressure (SBP) and diastolic blood pressure (DBP). Other performance outcomes included strength in squat, bench press, and deadlift, and vertical leap. Resting heart rate and a journal documenting a breakdown of calories expended and calories consumed were recorded daily while on the hike. The average daily duration of a hike was 8:43 ± 1:45 hours. The participant’s mass decreased by 2.5 kg (4% of body weight), body fat decreased by 1.2%, RMR decreased by 5 kcal/day, and VO2max increased by 8.7 mL/kg/min (17%). Among metabolic variables, total cholesterol increased by 18 mg/dL (10%); triglyceride concentration decreased by 23 mg/dL (29%); HDL decreased by 1 mg/dL (2%), and; LDL increased by 24 mg/dL (23%). With regard to cardiovascular variables, resting heart rate decreased from 85 bpm to 67 bpm (21%), SBP decreased by 39 mmHg (27%), and DBP decreased by 2 mmHg (3%). Among performance variables, maximal squat performance decreased by 29.5 kg (19%), maximal bench press performance decreased by 18.2 kg (16%), maximal deadlift decreased 31.7 kg (17%), and vertical jump distance decreased 13 cm (14%). The average daily dietary variables were as follows: average calories consumed = 4000 ± 463 kcal/day; average calories expended from hiking and metabolic rate combined = 5188 ±1197 kcal/day; average daily caloric deficit = -1165 ± 1070 kcal/day; average carbohydrate intake = 501 ± 78 g/day; average protein intake = 143 ± 19 g/day; average fat intake = 154 ± 25g/day. The magnitude and duration of an extended backpacking trip can lead to a reduction in strength and power. A diet high in protein did not prevent the loss of lean body mass
- …