8,811 research outputs found

    Charge transfer and trapping as origin of a double dip in the transfer characteristics of graphene based field-effect transistors

    Full text link
    We discuss the origin of an additional dip other than the charge neutrality point observed in transfer characteristics of graphene-based field-effect transistors. The double-dip is proved to arise from charge transfer between graphene and metal electrodes, while charge storage at the graphene/SiO2 interface enhances it. Considering different Fermi energy from the neutrality point along the channel and partial charge pinning at the contacts, we propose a model which explains all features in gate voltage loops.Comment: 14 pages, 5 figure

    Graphene field effect transistors with Niobium contacts and asymmetric transfer characteristics

    Full text link
    We fabricate back-gated field effect transistors using Niobium electrodes on mechanically exfoliated monolayer graphene and perform electrical characterization in the pressure range from atmospheric down to 10-4 mbar. We study the effect of room temperature vacuum degassing and report asymmetric transfer characteristics with a resistance plateau in the n-branch. We show that weakly chemisorbed Nb acts as p-dopant on graphene and explain the transistor characteristics by Nb/graphene interaction with unpinned Fermi level at the interface.Comment: 10 pages, Research Pape

    Field emission from single and few-layer graphene flakes

    Full text link
    We report the observation and characterization of field emission current from individual single- and few-layer graphene flakes laid on a flat SiO2/Si substrate. Measurements were performed in a scanning electron microscope chamber equipped with nanoprobes, used as electrodes to realize local measurements of the field emission current. We achieved field emission currents up to 1 {\mu}A from the flat part of graphene flakes at applied fields of few hundred V/{\mu}m. We found that emission process is stable over a period of several hours and that it is well described by a Fowler-Nordheim model for currents over 5 orders of magnitude

    Solar-like oscillations in the G8 V star tau Ceti

    Full text link
    We used HARPS to measure oscillations in the low-mass star tau Cet. Although the data were compromised by instrumental noise, we have been able to extract the main features of the oscillations. We found tau Cet to oscillate with an amplitude that is about half that of the Sun, and with a mode lifetime that is slightly shorter than solar. The large frequency separation is 169 muHz, and we have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to estimate the mean density of the star to an accuracy of 0.45% which, combined with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).Comment: accepted for publication in A&

    Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    Full text link
    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 A/W for white LED light at 3 mW/cm2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. This work represents a significant advance in the realization of graphene/Si Schottky devices for optoelectronic applications.Comment: Research paper, 22 pages, 7 figure

    On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs

    Get PDF
    We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    corecore