43 research outputs found
Blood Levels of Macrophage Migration Inhibitory Factor after Successful Resuscitation from Cardiac Arrest
Introduction: Ischemia-reperfusion injury following cardiopulmonary resuscitation (CPR) is associated with a systemic inflammatory response, resulting in post-resuscitation disease. In the present study we investigated the response of the pleiotropic inflammatory cytokine macrophage migration inhibitory factor (MIF) to CPR in patients admitted to the hospital after out-of-hospital cardiac arrest (OHCA). To describe the magnitude of MIF release, we compared the blood levels from CPR patients with those obtained in healthy volunteers and with an aged- and gender-matched group of patient
Genetically elevated high-density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease
Introduction: There is conflicting evidence whether high-density lipoprotein cholesterol (HDL-C) is a risk factor for Alzheimer's disease (AD) and dementia. Genetic variation in the cholesteryl ester transfer protein (CETP) locus is associated with altered HDL-C. We aimed to assess AD risk by genetically predicted HDL-C.
Methods: Ten single nucleotide polymorphisms within the CETP locus predicting HDL-C were applied to the International Genomics of Alzheimer's Project (IGAP) exome chip stage 1 results in up 16,097 late onset AD cases and 18,077 cognitively normal elderly controls. We performed instrumental variables analysis using inverse variance weighting, weighted median, and MR-Egger.
Results: Based on 10 single nucleotide polymorphisms distinctly predicting HDL-C in the CETP locus, we found that HDL-C was not associated with risk of AD (P > .7).
Discussion: Our study does not support the role of HDL-C on risk of AD through HDL-C altered by CETP. This study does not rule out other mechanisms by which HDL-C affects risk of AD
Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants
Therapeutic hypothermia (TH) is a promising cardioprotective treatment for cardiac arrest and acute myocardial infarction, but its cytoprotective mechanisms remain unknown. In this study, we developed a murine cardiomyocyte model of ischemia-reperfusion injury to better determine the mechanisms of TH cardioprotection. We hypothesized that TH manipulates Akt, a survival kinase that mediates mitochondrial protection by modulating reactive oxygen species (ROS) and nitric oxide (NO) generation. Cardiomyocytes, isolated from 1- to 2-day-old C57BL6/J mice, were exposed to 90 min simulated ischemia and 3 h reperfusion. For TH, cells were cooled to 32°C during the last 20 min of ischemia and the first hour of reperfusion. Cell viability was evaluated by propidium iodide and lactate dehydrogenase release. ROS production was measured by 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate and mitochondrial membrane potential (ΔΨm) by 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazoly-carbocyanine iodide (JC-1). Phospho (p)-Akt (Thr308), p-Akt (Ser473), and phosphorylated heat shock protein 27 (p-HSP27) (Ser82) were analyzed by Western blot analysis. TH attenuated reperfusion ROS generation, increased NO, maintained ΔΨm, and decreased cell death [19.3 ± 3.3% (n = 11) vs. 44.7 ± 2.7% (n = 10), P < 0.001]. TH also increased p-Akt during ischemia before reperfusion. TH protection and attenuation of ROS were blocked by the inhibition of Akt and NO synthase but not by a cGMP inhibitor. HSP27, a regulator of Akt, also exhibited increased phosphorylation (Ser82) during ischemia with TH. We conclude that TH cardioprotection is mediated by enhanced Akt/HSP27 phosphorylation and enhanced NO generation, resulting in the attenuation of ROS generation and the maintenance of ΔΨm following ischemia-reperfusion