74 research outputs found
Feasibility of identifying families for genetic studies of birth defects using the National Health Interview Survey
BACKGROUND: The purpose of this study was to determine whether the National Health Interview Survey is a useful source to identify informative families for genetic studies of birth defects. METHODS: The 1994/1995 National Health Interview Survey (NHIS) was used to identify households where individuals with two or more birth defects reside. Four groups of households were identified: 1) single non-familial (one individual with one birth defect); 2) single familial (more than one individual with one birth defect); 3) multiple non-familial (one individual with more than one birth defect), and 4) multiple familial (more than one individual with more than one birth defect). The March 2000 U.S. Census on households was used to estimate the total number of households in which there are individuals with birth defects. RESULTS: Of a total of 28,094 households and surveyed about birth defects and impairments, 1,083 single non-familial, 55 multiple non-familial, 54 single familial, and 8 multiple familial households were identified. Based on the 2000 U.S. census, it is estimated that there are 4,472,385 households where at least one person has one birth defect in the United States and in 234,846 of them there are at least two affected individuals. Western states had the highest prevalence rates. CONCLUSIONS: Population-based methods, such as the NHIS, are modestly useful to identify the number and the regions where candidate families for genetic studies of birth defects reside. Clinic based studies and birth defects surveillance systems that collect family history offer better probability of ascertainment
Multiple Chronic Conditions: Prevalence, Health Consequences, and Implications for Quality, Care Management, and Costs
Persons with multiple chronic conditions are a large and growing segment of the US population. However, little is known about how chronic conditions cluster, and the ramifications of having specific combinations of chronic conditions. Clinical guidelines and disease management programs focus on single conditions, and clinical research often excludes persons with multiple chronic conditions. Understanding how conditions in combination impact the burden of disease and the costs and quality of care received is critical to improving care for the 1 in 5 Americans with multiple chronic conditions. This Medline review of publications examining somatic chronic conditions co-occurring with 1 or more additional specific chronic illness between January 2000 and March 2007 summarizes the state of our understanding of the prevalence and health challenges of multiple chronic conditions and the implications for quality, care management, and costs
A hierarchical and modular approach to the discovery of robust associations in genome-wide association studies from pooled DNA samples
[Background]
One of the challenges of the analysis of pooling-based genome wide association studies is to identify authentic associations among potentially thousands of false positive associations.
[Results]
We present a hierarchical and modular approach to the analysis of genome wide genotype data that incorporates quality control, linkage disequilibrium, physical distance and gene ontology to identify authentic associations among those found by statistical association tests. The method is developed for the allelic association analysis of pooled DNA samples, but it can be easily generalized to the analysis of individually genotyped samples. We evaluate the approach using data sets from diverse genome wide association studies including fetal hemoglobin levels in sickle cell anemia and a sample of centenarians and show that the approach is highly reproducible and allows for discovery at different levels of synthesis.
[Conclusion]
Results from the integration of Bayesian tests and other machine learning techniques with linkage disequilibrium data suggest that we do not need to use too stringent thresholds to reduce the number of false positive associations. This method yields increased power even with relatively small samples. In fact, our evaluation shows that the method can reach almost 70% sensitivity with samples of only 100 subjects.Supported by NHLBI grants R21 HL080463 (PS); R01 HL68970 (MHS); K-24, AG025727 (TP); K23 AG026754 (D.T.)
Mutations in HYAL2, Encoding Hyaluronidase 2, Cause a Syndrome of Orofacial Clefting and Cor Triatriatum Sinister in Humans and Mice.
Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development
An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression.
Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and functional variation correlated with gene expression. We report a novel intergenic breast cancer risk locus containing an enhancer copy number variation (enCNV; deletion) located approximately 400Kb upstream to IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 promoter. The enCNV is correlated with modified ERα binding and monoallelic-repression of IGFBP5 following estrogen treatment. We investigated the association of enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our findings in an independent set of 62,533 cases and 60,966 controls from 41 case control studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV genotype (percopy OR=0.68 95%CI 0.55-0.83, P=0.0002; replication OR=0.77 95%CI 0.73-0.82, P=2.1x10(-19)) and identify 13 additional linked variants (r(2)>0.8) in the 20Kb linkage block containing the enCNV (P=3.2x10(-15) - 5.6x10(-17)). These associations were independent of previously reported 2q35 variants, rs13387042/rs4442975 and rs16857609, and were stronger for ER-positive than ER-negative disease. Together, these results suggest that 2q35 breast cancer risk loci may be mediating their effect through IGFBP5
An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression.
Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and functional variation correlated with gene expression. We report a novel intergenic breast cancer risk locus containing an enhancer copy number variation (enCNV; deletion) located approximately 400Kb upstream to IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 promoter. The enCNV is correlated with modified ERα binding and monoallelic-repression of IGFBP5 following estrogen treatment. We investigated the association of enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our findings in an independent set of 62,533 cases and 60,966 controls from 41 case control studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV genotype (percopy OR=0.68 95%CI 0.55-0.83, P=0.0002; replication OR=0.77 95%CI 0.73-0.82, P=2.1x10(-19)) and identify 13 additional linked variants (r(2)>0.8) in the 20Kb linkage block containing the enCNV (P=3.2x10(-15) - 5.6x10(-17)). These associations were independent of previously reported 2q35 variants, rs13387042/rs4442975 and rs16857609, and were stronger for ER-positive than ER-negative disease. Together, these results suggest that 2q35 breast cancer risk loci may be mediating their effect through IGFBP5
- …