3,860 research outputs found
Manipulating infrared photons using plasmons in transparent graphene superlattices
Superlattices are artificial periodic nanostructures which can control the
flow of electrons. Their operation typically relies on the periodic modulation
of the electric potential in the direction of electron wave propagation. Here
we demonstrate transparent graphene superlattices which can manipulate infrared
photons utilizing the collective oscillations of carriers, i.e., plasmons of
the ensemble of multiple graphene layers. The superlattice is formed by
depositing alternating wafer-scale graphene sheets and thin insulating layers,
followed by patterning them all together into 3-dimensional
photonic-crystal-like structures. We demonstrate experimentally that the
collective oscillation of Dirac fermions in such graphene superlattices is
unambiguously nonclassical: compared to doping single layer graphene,
distributing carriers into multiple graphene layers strongly enhances the
plasmonic resonance frequency and magnitude, which is fundamentally different
from that in a conventional semiconductor superlattice. This property allows us
to construct widely tunable far-infrared notch filters with 8.2 dB rejection
ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a
superlattice with merely five graphene atomic layers. Moreover, an unpatterned
superlattice shields up to 97.5% of the electromagnetic radiations below 1.2
terahertz. This demonstration also opens an avenue for the realization of other
transparent mid- and far-infrared photonic devices such as detectors,
modulators, and 3-dimensional meta-material systems.Comment: under revie
Heritability of Lumbar Trabecular Bone Mechanical Properties in Baboons
Genetic effects on mechanical properties have been demonstrated in rodents, but not confirmed in primates. Our aim was to quantify the proportion of variation in vertebral trabecular bone mechanical properties that is due to the effects of genes. L3 vertebrae were collected from 110 females and 46 male baboons (6–32 years old) from a single extended pedigree. Cranio-caudally oriented trabecular bone cores were scanned with microCT then tested in monotonic compression to determine apparent ultimate stress, modulus, and toughness. Age and sex effects and heritability (h2) were assessed using maximum likelihood-based variance components methods. Additive effects of genes on residual trait variance were significant for ultimate stress (h2 = 0.58), toughness (h2 = 0.64), and BV/TV (h2 = 0.55). When BV/TV was accounted for, the residual variance in ultimate stress accounted for by the additive effects of genes was no longer significant. Toughness, however, showed evidence of a non-BV/TV-related genetic effect. Overall, maximum stress and modulus show strong genetic effects that are nearly entirely due to bone volume. Toughness shows strong genetic effects related to bone volume and shows additional genetic effects (accounting for 10% of the total trait variance) that are independent of bone volume. These results support continued use of bone volume as a focal trait to identify genes related to skeletal fragility, but also show that other focal traits related to toughness and variation in the organic component of bone matrix will enhance our ability to find additional genes that are particularly relevant to fatigue-related fractures
The Euphrates-Tigris-Karun river system: Provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate
We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and heavy-mineral dataset, integrated by sand geochemistry and U–Pb age spectra of detrital zircons, highlights the several peculiarities of this large source-to-sink sediment-routing system and widens the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison of classical static versus upgraded dynamic petrologic models enhances the power of provenance analysis, and allows us to derive a more refined conceptual model of reference and to verify the limitations of the approach. Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-feldspar and mica. This quartz-poor petrographic signature, characterizing the undissected composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate in the region allows preservation of chemically unstable grains including carbonate rock fragments and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical carbonate factory. Quartz-poor sediment from the Anatolia-Zagros orogen mixes with quartz-rich recycled sands from Arabia along the western side of the foreland basin, and is traced all along the Gulf shores as far as the Rub' al-Khali sand sea up to 4000 km from Euphrates headwaters
Impact of inhaled corticosteroids on growth in children with asthma: systematic review and meta-analysis
Background: Long-term inhaled corticosteroids (ICS) may reduce growth velocity and final height of children with asthma. We aimed to evaluate the association between ICS use of >12 months and growth. Methods: We initially searched MEDLINE and EMBASE in July 2013, followed by a PubMed search updated to December 2014. We selected RCTs and controlled observational studies of ICS use in patients with asthma. We conducted random effects meta-analysis of mean differences in growth velocity (cm/year) or final height (cm) between groups. Heterogeneity was assessed using the I2 statistic. Results: We found 23 relevant studies (twenty RCTs and three observational studies) after screening 1882 hits. Meta-analysis of 16 RCTs showed that ICS use significantly reduced growth velocity at one year follow-up (mean difference -0.48 cm/year (95% CI -0.66 to -0.29)). There was evidence of a dose-response effect in three RCTs. Final adult height showed a mean reduction of -1.20 cm (95% CI -1.90 cm to -0.50 cm) with budesonide versus placebo in a high quality RCT. Meta-analysis of two lower quality observational studies revealed uncertainty in the association between ICS use and final adult height, pooled mean difference -0.85 cm (95% CI -3.35 to 1.65). Conclusion: Use of ICS for >12 months in children with asthma has a limited impact on annual growth velocity. In ICS users, there is a slight reduction of about a centimeter in final adult height, which when interpreted in the context of average adult height in England (175 cm for men and 161 cm for women), represents a 0.7% reduction compared to non-ICS users
Stable Heterogeneity for the Production of Diffusible Factors in Cell Populations
The production of diffusible molecules that promote survival and growth is common in bacterial and eukaryotic cell populations, and can be considered a form of cooperation between cells. While evolutionary game theory shows that producers and non-producers can coexist in well-mixed populations, there is no consensus on the possibility of a stable polymorphism in spatially structured populations where the effect of the diffusible molecule extends beyond one-step neighbours. I study the dynamics of biological public goods using an evolutionary game on a lattice, taking into account two assumptions that have not been considered simultaneously in existing models: that the benefit of the diffusible molecule is a non-linear function of its concentration, and that the molecule diffuses according to a decreasing gradient. Stable coexistence of producers and non-producers is observed when the benefit of the molecule is a sigmoid function of its concentration, while strictly diminishing returns lead to coexistence only for very specific parameters and linear benefits never lead to coexistence. The shape of the diffusion gradient is largely irrelevant and can be approximated by a step function. Since the effect of a biological molecule is generally a sigmoid function of its concentration (as described by the Hill equation), linear benefits or strictly diminishing returns are not an appropriate approximations for the study of biological public goods. A stable polymorphism of producers and non-producers is in line with the predictions of evolutionary game theory and likely to be common in cell populations
Photoswitchable diacylglycerols enable optical control of protein kinase C.
Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
Safety, efficacy and glucose turnover of reduced prandial boluses during closed-loop therapy in adolescents with type 1 diabetes: a randomized clinical trial.
AIMS: To evaluate safety, efficacy and glucose turnover during closed-loop with meal announcement using reduced prandial insulin boluses in adolescents with type 1 diabetes (T1D). METHODS: We conducted a randomized crossover study comparing closed-loop therapy with standard prandial insulin boluses versus closed-loop therapy with prandial boluses reduced by 25%. Eight adolescents with T1D [3 males; mean (standard deviation) age 15.9 (1.5) years, glycated haemoglobin 74 (17) mmol/mol; median (interquartile range) total daily dose 0.9 (0.7, 1.1) IU/kg/day] were studied on two 36-h-long visits. In random order, subjects received closed-loop therapy with either standard or reduced insulin boluses administered with main meals (50-80 g carbohydrates) but not with snacks (15-30 g carbohydrates). Stable-label tracer dilution methodology measured total glucose appearance (Ra_total) and glucose disposal (Rd). RESULTS: The median (interquartile range) time spent in target (3.9-10 mmol/l) was similar between the two interventions [74 (66, 84)% vs 80 (65, 96)%; p = 0.87] as was time spent above 10 mmol/l [21.8 (16.3, 33.5)% vs 18.0 (4.1, 34.2)%; p = 0.87] and below 3.9 mmol/l [0 (0, 1.5)% vs 0 (0, 1.8)%; p = 0.88]. Mean plasma glucose was identical during the two interventions [8.4 (0.9) mmol/l; p = 0.98]. Hypoglycaemia occurred once 1.5 h post-meal during closed-loop therapy with standard bolus. Overall insulin delivery was lower with reduced prandial boluses [61.9 (55.2, 75.0) vs 72.5 (63.6, 80.3) IU; p = 0.01] and resulted in lower mean plasma insulin concentration [186 (171, 260) vs 252 (198, 336) pmol/l; p = 0.002]. Lower plasma insulin was also documented overnight [160 (136, 192) vs 191 (133, 252) pmol/l; p = 0.01, pooled nights]. Ra_total was similar [26.3 (21.9, 28.0) vs 25.4 (21.0, 29.2) µmol/kg/min; p = 0.19] during the two interventions as was Rd [25.8 (21.0, 26.9) vs 25.2 (21.2, 28.8) µmol/kg/min; p = 0.46]. CONCLUSIONS: A 25% reduction in prandial boluses during closed-loop therapy maintains similar glucose control in adolescents with T1D whilst lowering overall plasma insulin levels. It remains unclear whether closed-loop therapy with a 25% reduction in prandial boluses would prevent postprandial hypoglycaemia.US National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK085621). Support for the Artificial Pancreas research programme by the JDRF, Diabetes UK, NIHR Cambridge Biomedical Research Centre, and Wellcome Trust Strategic Award (100574/Z/12/Z) is acknowledged.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/dom.1254
Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses
Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response
The ethics of digital well-being: a multidisciplinary perspective
This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being
- …
