53 research outputs found

    Multilocus Microsatellite Typing (MLMT) of Strains from Turkey and Cyprus Reveals a Novel Monophyletic L. donovani Sensu Lato Group

    Get PDF
    In eastern Mediterranean, leishmaniasis represents a major public health problem with considerable impact on morbidity and potential to spread. Cutaneous leishmaniasis (CL) caused by L. major or L. tropica accounts for most cases in this region although visceral leishmaniasis (VL) caused by L. infantum is also common. New foci of human CL caused by L. donovani complex strains were recently described in Cyprus and Turkey. Herein we analyzed Turkish strains from human CL foci in Çukurova region (north of Cyprus) and a human VL case in Kuşadasi. These were compared to Cypriot strains that were previously typed by Multilocus Enzyme Electrophoresis (MLEE) as L. donovani MON-37. Nevertheless, they were found genetically distinct from MON-37 strains of other regions and therefore their origin remained enigmatic. A population study was performed by Multilocus Microsatellite Typing (MLMT) and the profile of the Turkish strains was compared to previously analyzed L. donovani complex strains. Our results revealed close genetic relationship between Turkish and Cypriot strains, which form a genetically distinct L. infantum monophyletic group, suggesting that Cypriot strains may originate from Turkey. Our analysis indicates that the epidemiology of leishmaniasis in this region is more complicated than originally thought

    Modelling optimal location for pre-hospital helicopter emergency medical services

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing the range and scope of early activation/auto launch helicopter emergency medical services (HEMS) may alleviate unnecessary injury mortality that disproportionately affects rural populations. To date, attempts to develop a quantitative framework for the optimal location of HEMS facilities have been absent.</p> <p>Methods</p> <p>Our analysis used five years of critical care data from tertiary health care facilities, spatial data on origin of transport and accurate road travel time catchments for tertiary centres. A location optimization model was developed to identify where the expansion of HEMS would cover the greatest population among those currently underserved. The protocol was developed using geographic information systems (GIS) to measure populations, distances and accessibility to services.</p> <p>Results</p> <p>Our model determined Royal Inland Hospital (RIH) was the optimal site for an expanded HEMS – based on denominator population, distance to services and historical usage patterns.</p> <p>Conclusion</p> <p>GIS based protocols for location of emergency medical resources can provide supportive evidence for allocation decisions – especially when resources are limited. In this study, we were able to demonstrate conclusively that a logical choice exists for location of additional HEMS. This protocol could be extended to location analysis for other emergency and health services.</p

    Comparative Microsatellite Typing of New World Leishmania infantum Reveals Low Heterogeneity among Populations and Its Recent Old World Origin

    Get PDF
    Leishmania infantum (syn. L. chagasi) is the causative agent of visceral leishmaniasis (VL) in the New World (NW) with endemic regions extending from southern USA to northern Argentina. The two hypotheses about the origin of VL in the NW suggest (1) recent importation of L. infantum from the Old World (OW), or (2) an indigenous origin and a distinct taxonomic rank for the NW parasite. Multilocus microsatellite typing was applied in a survey of 98 L. infantum isolates from different NW foci. The microsatellite profiles obtained were compared to those of 308 L. infantum and 20 L. donovani strains from OW countries previously assigned to well-defined populations. Two main populations were identified for both NW and OW L. infantum. Most of the NW strains belonged to population 1, which corresponded to the OW MON-1 population. However, the NW population was much more homogeneous. A second, more heterogeneous, population comprised most Caribbean strains and corresponded to the OW non-MON-1 population. All Brazilian L. infantum strains belonged to population 1, although they represented 61% of the sample and originated from 9 states. Population analysis including the OW L. infantum populations indicated that the NW strains were more similar to MON-1 and non-MON-1 sub-populations of L. infantum from southwest Europe, than to any other OW sub-population. Moreover, similarity between NW and Southwest European L. infantum was higher than between OW L. infantum from distinct parts of the Mediterranean region, Middle East and Central Asia. No correlation was found between NW L. infantum genotypes and clinical picture or host background. This study represents the first continent-wide analysis of NW L. infantum population structure. It confirmed that the agent of VL in the NW is L. infantum and that the parasite has been recently imported multiple times to the NW from southwest Europe

    A canine leishmaniasis pilot survey in an emerging focus of visceral leishmaniasis: Posadas (Misiones, Argentina)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing number of reports are calling our attention to the worldwide spread of leishmaniasis. The urbanization of zoonotic visceral leishmaniasis (VL) has been observed in different South American countries, due to changes in demographic and ecological factors. In May 2006, VL was detected for the first time in the city of Posadas (Misiones, Argentina). This event encouraged us to conduct a clinical and parasitological pilot survey on domestic dogs from Posadas to identify their potential role as reservoirs for the disease.</p> <p>Methods</p> <p>One hundred and ten dogs from the city of Posadas were included in the study. They were selected based on convenience and availability. All dogs underwent clinical examination. Symptomatology related to canine leishmaniasis was recorded, and peripheral blood and lymph node aspirates were collected. Anti-<it>Leishmania </it>antibodies were detected using rK39-immunocromatographic tests and IFAT. Parasite detection was based on peripheral blood and lymph node aspirate PCR targeting the <it>SSUrRNA </it>gene. Molecular typing was addressed by DNA sequence analysis of the PCR products obtained by <it>SSUrRNA </it>and ITS-1 PCR.</p> <p>Results</p> <p>According to clinical examination, 69.1% (76/110) of the dogs presented symptoms compatible with canine leishmaniasis. Serological analyses were positive for 43.6% (48/110) of the dogs and parasite DNA was detected in 47.3% (52/110). A total of 63 dogs (57.3%) were positive by serology and/or PCR. Molecular typing identified <it>Leishmania infantum </it>(syn. <it>Leishmania chagasi</it>) as the causative agent.</p> <p>Conclusions</p> <p>This work confirms recent findings which revealed the presence of <it>Lutzomyia longipalpis</it>, the vector of <it>L. infantum </it>in this area of South America. This new VL focus could be well established, and further work is needed to ascertain its magnitude and to prevent further human VL cases.</p

    A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies

    Get PDF
    Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites
    corecore