293 research outputs found
Density Waves in a Transverse Electric Field
In a quasi-one-dimensional conductor with an open Fermi surface, a Charge or
a Spin Density Wave phase can be destroyed by an electric field perpendicular
to the direction of high conductivity. This mechanism, due to the breakdown of
electron-hole symmetry, is very similar to the orbital destruction of
superconductivity by a magnetic field, due to time-reversal symmetry.Comment: 3 pages, Latex, 2 figures, to appear in Phys. Rev. B Rapid Com
Microscopic calculation of the spin-dependent neutron scattering lengths on 3He
We report on the spin.dependent neutron scattering length on 3He from a
microscopic calculation of p-3H, n-3He, and d-2H scattering employing the
Argonne v18 nucleon-nucleon potential with and without additional three-nucleon
force. The results and that of a comprehensive R-matrix analysis are compared
to a recent measurement. The overall agreement for the scattering lengths is
quite good. The imaginary parts of the scattering lengths are very sensitive to
the inclusion of three-nucleon forces, whereas the real parts are almost
insensitive.Comment: 9 pages, 1 figur
Elastic p-3He and n-3H scattering with two- and three-body forces
We report on a microscopic calculation of n-3H and p-3He scattering employing
the Argonne v_{18} and v_8' nucleon-nucleon potentials with and without
additional three-nucleon force. An R-matrix analysis of the p-3He and n-3H
scattering data is presented. Comparisons are made for the phase shifts and a
selection of measurements in both scattering systems. Differences between our
calculation and the R-matrix results or the experimental data can be attributed
to only two partial waves (3P0 and 3P2). We find the effect of the Urbana IX
and the Texas-Los Alamos three-nucleon forces on the phase shifts to be
negligible.Comment: submitted to Phys. Rev.
Angular dependence of the bulk nucleation field Hc2 of aligned MgB2 crystallites
Studies on the new MgB2 superconductor, with a critical temperature Tc ~ 39
K, have evidenced its potential for applications although intense magnetic
relaxation effects limit the critical current density, Jc, at high magnetic
fields. This means that effective pinning centers must be added into the
material microstructure, in order to halt dissipative flux movements.
Concerning the basic microscopic mechanism to explain the superconductivity in
MgB2, several experimental and theoretical works have pointed to the relevance
of a phonon-mediated interaction, in the framework of the BCS theory. Questions
have been raised about the relevant phonon modes, and the gap and Fermi surface
anisotropies, in an effort to interpret spectroscopic and thermal data that
give values between 2.4 and 4.5 for the gap energy ratio. Preliminary results
on the anisotropy of Hc2 have shown a ratio, between the in-plane and
perpendicular directions, around 1.7 for aligned MgB2 crystallites and 1.8 for
epitaxial thin films. Here we show a study on the angular dependence of Hc2
pointing to a Fermi velocity anisotropy around 2.5. This anisotropy certainly
implies the use of texturization techniques to optimize Jc in MgB2 wires and
other polycrystalline components.Comment: 10 pages + 4 Figs.; Revised version accepted in Phys. Rev.
Covariant Vortex In Superconducting-Superfluid-Normal Fluid Mixtures with Stiff Equation of State
The integrals of motion for a cylindrically symmetric stationary vortex are
obtained in a covariant description of a mixture of interacting
superconductors, superfluids and normal fluids. The relevant integrated
stress-energy coefficients for the vortex with respect to a vortex-free
reference state are calculated in the approximation of a ``stiff'', i.e. least
compressible, relativistic equation of state for the fluid mixture. As an
illustration of the foregoing general results, we discuss their application to
some of the well known examples of ``real'' superfluid and superconducting
systems that are contained as special cases. These include Landau's two-fluid
model, uncharged binary superfluid mixtures, rotating conventional
superconductors and the superfluid neutron-proton-electron plasma in the outer
core of neutron stars.Comment: 14 pages, uses RevTeX and amssymb, submitte
Screening current effects in Josephson junction arrays
The purpose of this work is to compare the dynamics of arrays of Josephson
junctions in presence of magnetic field in two different frameworks: the so
called XY frustrated model with no self inductance and an approach that takes
into account the screening currents (considering self inductances only). We
show that while for a range of parameters the simpler model is sufficiently
accurate, in a region of the parameter space solutions arise that are not
contained in the XY model equations.Comment: Figures available from the author
Condensate fraction in liquid 4He at zero temperature
We present results of the one-body density matrix (OBDM) and the condensate
fraction n_0 of liquid 4He calculated at zero temperature by means of the Path
Integral Ground State Monte Carlo method. This technique allows to generate a
highly accurate approximation for the ground state wave function Psi_0 in a
totally model-independent way, that depends only on the Hamiltonian of the
system and on the symmetry properties of Psi_0. With this unbiased estimation
of the OBDM, we obtain precise results for the condensate fraction n_0 and the
kinetic energy K of the system. The dependence of n_0 with the pressure shows
an excellent agreement of our results with recent experimental measurements.
Above the melting pressure, overpressurized liquid 4He shows a small condensate
fraction that has dropped to 0.8% at the highest pressure of p = 87 bar.Comment: 12 pages. 4 figures. Accepted for publication on "Journal of Low
Temperature Physics
On the third critical field in Ginzburg-Landau theory
Using recent results by the authors on the spectral asymptotics of the
Neumann Laplacian with magnetic field, we give precise estimates on the
critical field, , describing the appearance of superconductivity in
superconductors of type II. Furthermore, we prove that the local and global
definitions of this field coincide. Near only a small part, near the
boundary points where the curvature is maximal, of the sample carries
superconductivity. We give precise estimates on the size of this zone and decay
estimates in both the normal (to the boundary) and parallel variables
Hidden symmetry and knot solitons in a charged two-condensate Bose system
We show that a charged two-condensate Ginzburg-Landau model or equivalently a
Gross-Pitaevskii functional for two charged Bose condensates, can be mapped
onto a version of the nonlinear O(3) -model. This implies in particular
that such a system possesses a hidden O(3) symmetry and allows for the
formation of stable knotted solitons. The results, in particular, should be
relevant to the superconducting MgB_2.Comment: This version will appear in Phys. Rev. B, added a comment on the case
when condensates in two bands do not independently conserve, also added a
figure and references to experimental papers on MgB_2 (for which our study is
relevant). Miscellaneous links on knot solitons are also available at the
homepage of one of the authors http://www.teorfys.uu.se/PEOPLE/egor/ .
Animations of knot solitons are available at
http://users.utu.fi/h/hietarin/knots/c45_p2.mp
Linear Responses in Time-dependent Hartree-Fock-Bogoliubov Method with Gogny Interaction
A numerical method to integrate the time-dependent Hartree-Fock Bogoliubov
(TDHFB) equations with Gogny interaction is proposed. The feasibility of the
TDHFB code is illustrated by the conservation of the energy, particle numbers,
and center-of-mass in the small amplitude vibrations of oxygen 20. The TDHFB
code is applied to the isoscalar quadrupole and/or isovector dipole vibrations
in the linear (small amplitude) region in oxygen isotopes (masses A = 18,20,22
and 24), titanium isotopes (A = 44,50,52 and 54), neon isotope (A = 26), and
magnesium isotopes (A = 24 and 34). The isoscalar quadrupole and isovector
dipole strength functions are calculated from the expectation values of the
isoscalar quadrupole and isovector dipole moments.Comment: 10 pages, 13 figure
- …
