3 research outputs found

    Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Get PDF
    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift gamma-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 {\AA} (4000 {\AA} rest-frame) suggesting an unusually steep extinction curve. By analyzing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at < 8000 {\AA} and rise at < 4000 {\AA} is well explained by the combination of a steep extinction curve along the GRB line of sight and contamination by the host galaxy light so that the scenario with an extreme 2175 {\AA} extinction bump can be excluded. We localise the GRB to be at a projected distance of approximately 4 kpc from the centre of the host galaxy. Based on emission-line diagnostics of the four detected nebular lines, Halpha, Hbeta, [O II] and [O III], we find the host to be a modestly star forming (SFR = 1.34 +/- 0.04 Msun yr^-1) and relatively metal poor (Z = 0.35^{+0.15}_{-0.11} Zsun) galaxy with a large dust content, characterized by a measured visual attenuation of A_V = 1.74 +/- 0.41 mag, thus unexceptional in all its physical properties. We model the extinction curve of the host-corrected afterglow and show that the standard dust properties causing the reddening seen in the Local Group are inadequate in describing the steep drop. We conclude that the steep extinction curve seen in the afterglow towards the GRB is of exotic origin, is sightline-dependent only and thus solely a consequence of the circumburst environment

    The nature of the X-ray flash of August 24 2005 Photometric evidence for an on-axis z = 0.83 burst with continuous energy injection and an associated supernova?

    Full text link
    Aims.Our aim is to investigate the nature of the X-Ray Flash (XRF) of August 24, 2005. Methods.We present comprehensive photometric R-band observations of the fading optical afterglow of XRF 050824, from 11 min to 104 days after the burst. In addition we present observations taken during the first day in the BRIK\it BRIK bands and two epochs of spectroscopy. We also analyse available X-ray data. Results.The R-band lightcurve of the afterglow resembles the lightcurves of long duration Gamma-Ray Bursts (GRBs), i.e., a power-law, albeit with a rather shallow slope of α=0.6\alpha=0.6 ( FνtαF_{\nu} \propto t^{-\alpha}). Our late R-band images reveal the host galaxy. The rest-frame B-band luminosity is ~0.5 L*. The star-formation rate as determined from the [O II] emission line is ~ 1.8 M1.8~M_{\odot} yr-1. When accounting for the host contribution, the slope is α=0.65\alpha=0.65 ±\pm 0.01 and a break in the lightcurve is suggested. A potential lightcurve bump at 2 weeks can be interpreted as a supernova only if this is a supernova with a fast rise and a fast decay. However, the overall fit still shows excess scatter in the lightcurve in the form of wiggles and bumps. The flat lightcurves in the optical and X-rays could be explained by a continuous energy injection scenario, with an on-axis viewing angle and a wide jet opening angle ( \theta_j \ga {10}^\circ). If the energy injections are episodic this could potentially help explain the bumps and wiggles. Spectroscopy of the afterglow gives a redshift of z=0.828 ±\pm 0.005 from both absorption and emission lines. The spectral energy distribution (SED) of the afterglow has a power-law ( FννβF_{\nu} \propto \nu ^{-\beta}) shape with slope β=0.56{\beta}=0.56 ±\pm 0.04. This can be compared to the X-ray spectral index which is βX=1.0{\beta_{\rm X}}=1.0 ±\pm 0.1. The curvature of the SED constrains the dust reddening towards the burst to Av<0.5A_{\rm v}<0.5 mag

    The Deep and Transient Universe in the SVOM Era: New Challenges and Opportunities - Scientific prospects of the SVOM mission

    Full text link
    To take advantage of the astrophysical potential of Gamma-Ray Bursts (GRBs), Chinese and French astrophysicists have engaged the SVOM mission (Space-based multi-band astronomical Variable Objects Monitor). Major advances in GRB studies resulting from the synergy between space and ground observations, the SVOM mission implements space and ground instrumentation. The scientific objectives of the mission put a special emphasis on two categories of GRBs: very distant GRBs at z>>5 which constitute exceptional cosmological probes, and faint/soft nearby GRBs which allow probing the nature of the progenitors and the physics at work in the explosion. These goals have a major impact on the design of the mission: the on-board hard X-ray imager is sensitive down to 4 keV and computes on line image and rate triggers, and the follow-up telescopes on the ground are sensitive in the NIR. At the beginning of the next decade, SVOM will be the main provider of GRB positions and spectral parameters on very short time scale. The SVOM instruments will operate simultaneously with a wide range of powerful astronomical devices. This rare instrumental conjunction, combined with the relevance of the scientific topics connected with GRB studies, warrants a remarkable scientific return for SVOM. In addition, the SVOM instrumentation, primarily designed for GRB studies, composes a unique multi-wavelength observatory with rapid slew capability that will find multiple applications for the whole astronomy community beyond the specific objectives linked to GRBs. This report lists the scientific themes that will benefit from observations made with SVOM, whether they are specific GRB topics, or more generally all the issues that can take advantage of the multi-wavelength capabilities of SVOM
    corecore