405 research outputs found
Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation
Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status
On the origin of the invasive olives (Olea europaea L., Oleaceae).
The olive tree (Olea europaea) has successfully invaded several regions in Australia and Pacific islands. Two olive subspecies (subspp. europaea and cuspidata) were first introduced in these areas during the nineteenth century. In the present study, we determine the origin of invasive olives and investigate the importance of historical effects on the genetic diversity of populations. Four invasive populations from Australia and Hawaii were characterized using eight nuclear DNA microsatellites, plastid DNA markers as well as ITS-1 sequences. Based on these data, their genetic similarity with native populations was investigated, and it was determined that East Australian and Hawaiian populations (subsp. cuspidata) have originated from southern Africa while South Australian populations (subsp. europaea) have mostly derived from western or central Mediterranean cultivars. Invasive populations of subsp. cuspidata showed significant loss of genetic diversity in comparison to a putative source population, and a recent bottleneck was evidenced in Hawaii. Conversely, invasive populations of subsp. europaea did not display significant loss of genetic diversity in comparison to a native Mediterranean population. Different histories of invasion were inferred for these two taxa with multiple cultivars introduced restoring gene diversity for europaea and a single successful founder event and sequential introductions to East Australia and then Hawaii for cuspidata. Furthermore, one hybrid (cuspidata x europaea) was identified in East Australia. The importance of hybridizations in the future evolution of the olive invasiveness remains to be investigated
Climate change: Helping nature survive the human response
Climate change poses profound, direct, and well-documented threats to biodiversity. A significant fraction of Earth\u27s species is at risk of extinction due to changing precipitation and temperature regimes, rising and acidifying oceans, and other factors. There is also growing awareness of the diversity and magnitude of responses, both proactive and reactive, that people will undertake as lives and livelihoods are affected by climate change. Yet to date few studies have examined the relationship between these two powerful forces. The natural systems upon which people depend, already under direct assault from climate change, are further threatened by how we respond to climate change. Human history and recent studies suggest that our actions to cope with climate change (adaptation) or lessen its rate and magnitude (mitigation) could have impacts that match-and even exceed-the direct effects of climate change on ecosystems. If we are to successfully conserve biodiversity and maintain ecosystem services in a warming world, considerable effort is needed to predict and reduce the indirect risks created by climate change. ©2010 Wiley Periodicals, Inc.
Land-use effects on local biodiversity in tropical forests vary between continents
The file attached is the Published/publisher’s pdf version of the article
The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis
Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species–particularly in freshwater and marine environments–is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow
The high costs of conserving Southeast Asia\u27s lowland rainforests
Mechanisms that mitigate greenhouse-gas emissions via forest conservation have been portrayed as a cost-effective approach that can also protect biodiversity and vital ecosystem services. However, the costs of conservation - including opportunity costs - are spatially heterogeneous across the globe. The lowland rainforests of Southeast Asia represent a unique nexus of large carbon stores, imperiled biodiversity, large stores of timber, and high potential for conversion to oil-palm plantations, making this region one where understanding the costs of conservation is critical. Previous studies have underestimated the gap between conservation costs and conversion benefits in Southeast Asia. Using detailed logging records, cost data, and species-specific timber auction prices from Borneo, we show that the profitability of logging, in combination with potential profits from subsequent conversion to palm-oil production, greatly exceeds foreseeable revenues from a global carbon market and other ecosystem-service payment mechanisms. Thus, the conservation community faces a massive funding shortfall to protect the remaining lowland primary forests in Southeast Asia. © 2011 The Ecological Society of America
Does biodiversity benefit when the logging stops? An analysis of conservation risks and opportunities in active versus inactive logging concessions in Borneo
The island of Borneo is a biodiversity hotspot of global importance that continues to suffer from one of the highest deforestation rates in the tropics. Selective logging concessions overlay a third of the remaining natural forests in the Indonesian part of Borneo, but many of these concessions have become inactive in recent years. Whereas the cessation of logging could be beneficial to biodiversity, the absence of a logging company's presence in the forest could also leave the concession open to deforestation by other actors. Using remote sensing analyses, we evaluate 1) whether inactive concessions are more likely to suffer from deforestation than active ones, 2) the possible reasons why concessions become inactive, and 3) which inactive concessions hold the most potential for biodiversity conservation, if protected from deforestation. Our analysis shows that, counterintuitively, inactive concessions overall suffer a higher rate of forest loss than active ones. We find that small concession size and high elevation are correlated with inactive status. We identified several inactive concessions that, if maintained as natural forest, could significantly contribute to biodiversity conservation, as exemplified by their importance to two umbrella species: Bornean orangutan (Critically Endangered) and Sunda clouded leopard (Vulnerable). Because timber operations in other tropical regions are likely to experience similar cycles of activity and inactivity, the fate of inactive timber concessions and the opportunities they create for conservation deserve much greater attention from conservation scientists and practitioners
Collision Mortality Has No Discernible Effect on Population Trends of North American Birds
Avian biodiversity is threatened by numerous anthropogenic factors and migratory species are especially at risk. Migrating birds frequently collide with manmade structures and such losses are believed to represent the majority of anthropogenic mortality for North American birds. However, estimates of total collision mortality range across several orders of magnitude and effects on population dynamics remain unknown. Herein, we develop a novel method to assess relative vulnerability to anthropogenic threats, which we demonstrate using 243,103 collision records from 188 species of eastern North American landbirds. After correcting mortality estimates for variation attributable to population size and geographic overlap with potential collision structures, we found that per capita vulnerability to collision with buildings and towers varied over more than four orders of magnitude among species. Species that migrate long distances or at night were much more likely to be killed by collisions than year-round residents or diurnal migrants. However, there was no correlation between relative collision mortality and long-term population trends for these same species. Thus, although millions of North American birds are killed annually by collisions with manmade structures, this source of mortality has no discernible effect on populations
Protecting Endangered Species: Do the Main Legislative Tools Work?
It is critical to assess the effectiveness of the tools used to protect endangered species. The main tools enabled under the U.S. Endangered Species Act (ESA) to promote species recovery are funding, recovery plan development and critical habitat designation. Earlier studies sometimes found that statistically significant effects of these tools could be detected, but they have not answered the question of whether the effects were large enough to be biologically meaningful. Here, we ask: how much does the recovery status of ESA-listed species improve with the application of these tools? We used species' staus reports to Congress from 1988 to 2006 to quantify two measures of recovery for 1179 species. We related these to the amount of federal funding, years with a recovery plan, years with critical habitat designation, the amount of peer-reviewed scientific information, and time listed. We found that change in recovery status of listed species was, at best, only very weakly related to any of these tools. Recovery was positively related to the number of years listed, years with a recovery plan, and funding, however, these tools combined explain <13% of the variation in recovery status among species. Earlier studies that reported significant effects of these tools did not focus on effect sizes; however, they are in fact similarly small. One must conclude either that these tools are not very effective in promoting species' recovery, or (as we suspect) that species recovery data are so poor that it is impossible to tell whether the tools are effective or not. It is critically important to assess the effectiveness of tools used to promote species recovery; it is therefore also critically important to obtain population status data that are adequate to that task
- …
