3,715 research outputs found

    Closed Strings in Misner Space: Stringy Fuzziness with a Twist

    Full text link
    Misner space, also known as the Lorentzian orbifold R1,1/boostR^{1,1}/boost, is the simplest tree-level solution of string theory with a cosmological singularity. We compute tree-level scattering amplitudes involving twisted states, using operator and current algebra techniques. We find that, due to zero-point quantum fluctuations of the excited modes, twisted strings with a large winding number ww are fuzzy on a scale logw\sqrt{\log w}, which can be much larger than the string scale. Wave functions are smeared by an operator exp(Δ(ν)+)\exp(\Delta(\nu) \partial_+ \partial_-) reminiscent of the Moyal-product of non-commutative geometry, which, since Δ(ν)\Delta(\nu) is real, modulates the amplitude rather than the phase of the wave function, and is purely gravitational in its origin. We compute the scattering amplitude of two twisted states and one tachyon or graviton, and find a finite result. The scattering amplitude of two twisted and two untwisted states is found to diverge, due to the propagation of intermediate winding strings with vanishing boost momentum. The scattering amplitude of three twisted fields is computed by analytic continuation from three-point amplitudes of states with non-zero p+p^+ in the Nappi-Witten plane wave, and the non-locality of the three-point vertex is found to diverge for certain kinematical configurations. Our results for the three-point amplitudes allow in principle to compute, to leading order, the back-reaction on the metric due to a condensation of coherent winding strings.Comment: 29 pages, Latex2e, uses JHEP3.cls; v3: minor corrections, final version to appear in JCA

    Estimating sunspot number

    Get PDF
    An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized

    Application of the Hughes-LIU algorithm to the 2-dimensional heat equation

    Get PDF
    An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated

    Restricted equilibrium ensembles: Exact equation of state of a model glass

    Full text link
    We investigate the thermodynamic properties of a toy model of glasses: a hard-core lattice gas with nearest neighbor interaction in one dimension. The time-evolution is Markovian, with nearest-neighbor and next-nearest neighbor hoppings, and the transition rates are assumed to satisfy detailed balance condition, but the system is non-ergodic below a glass temperature. Below this temperature, the system is in restricted thermal equilibrium, where both the number of sectors, and the number of accessible states within a sector grow exponentially with the size of the system. Using partition functions that sum only over dynamically accessible states within a sector, and then taking a quenched average over the sectors, we determine the exact equation of state of this system.Comment: 6 pages, 2 figure

    Bioengineering Dermo-Epidermal Skin Grafts with Blood and Lymphatic Capillaries

    Get PDF
    The first bioengineered, autologous, dermo-epidermal skin grafts are presently undergoing clinical trials; hence, it is reasonable to envisage the next clinical step at the forefront of plastic and burn surgery, which is the generation of autologous skin grafts that contain vascular plexuses, preformed in vitro. As the importance of the blood, and particularly the lymphatic vascular system, is increasingly recognized, it is attractive to engineer both human blood and lymphatic vessels in one tissue or organ graft. We show here that functional lymphatic capillaries can be generated using three-dimensional hydrogels. Like normal lymphatics, these capillaries branch, form lumen, and take up fluid in vitro and in vivo after transplantation onto immunocompromised rodents. Formation of lymphatic capillaries could be modulated by both lymphangiogenic and anti-lymphangiogenic stimuli, demonstrating the potential usefulness of this system for in vitro testing. Blood and lymphatic endothelial cells never intermixed during vessel development, nor did blood and lymphatic capillaries anastomose under the described circumstances. After transplantation of the engineered grafts, the human lymphatic capillaries anastomosed to the nude rat's lymphatic plexus and supported fluid drainage. Successful preclinical results suggest that these skin grafts could be applied on patients suffering from severe skin defects

    Proteasome Lid Bridges Mitochondrial Stress with Cdc53/Cullin1 NEDDylation Status

    Get PDF
    Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26 S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis

    A Fermi Surface Model for Large Supersymmetric AdS_5 Black Holes

    Full text link
    We identify a large family of 1/16 BPS operators in N=4 SYM that qualitatively reproduce the relations between charge, angular momentum and entropy in regular supersymmetric AdS_5 black holes when the main contribution to their masses is given by their angular momentum.Comment: 32 pages, 6 figures, LaTeX uses JHEP3 class; ver 2- added acknowledgment, minor change

    quasiharmonic equations of state for dynamically-stabilized soft-mode materials

    Get PDF
    We introduce a method for treating soft modes within the analytical framework of the quasiharmonic equation of state. The corresponding double-well energy-displacement relation is fitted to a functional form that is harmonic in both the low- and high-energy limits. Using density-functional calculations and statistical physics, we apply the quasiharmonic methodology to solid periclase. We predict the existence of a B1--B2 phase transition at high pressures and temperatures
    corecore