3,784 research outputs found
The pros and cons of using SDL for creation of distributed services
In a competitive market for the creation of complex distributed services, time to market, development cost, maintenance and flexibility are key issues. Optimizing the development process is very much a matter of optimizing the technologies used during service creation. This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on use of the language SDL for efficient service creation
Diffusion in a generalized Rubinstein-Duke model of electrophoresis with kinematic disorder
Using a generalized Rubinstein-Duke model we prove rigorously that kinematic
disorder leaves the prediction of standard reptation theory for the scaling of
the diffusion constant in the limit for long polymer chains
unaffected. Based on an analytical calculation as well as Monte Carlo
simulations we predict kinematic disorder to affect the center of mass
diffusion constant of an entangled polymer in the limit for long chains by the
same factor as single particle diffusion in a random barrier model.Comment: 29 pages, 3 figures, submitted to PR
Loss of solutions in shear banding fluids in shear banding fluids driven by second normal stress differences
Edge fracture occurs frequently in non-Newtonian fluids. A similar
instability has often been reported at the free surface of fluids undergoing
shear banding, and leads to expulsion of the sample. In this paper the
distortion of the free surface of such a shear banding fluid is calculated by
balancing the surface tension against the second normal stresses induced in the
two shear bands, and simultaneously requiring a continuous and smooth meniscus.
We show that wormlike micelles typically retain meniscus integrity when shear
banding, but in some cases can lose integrity for a range of average applied
shear rates during which one expects shear banding. This meniscus fracture
would lead to ejection of the sample as the shear banding region is swept
through. We further show that entangled polymer solutions are expected to
display a propensity for fracture, because of their much larger second normal
stresses. These calculations are consistent with available data in the
literature. We also estimate the meniscus distortion of a three band
configuration, as has been observed in some wormlike micellar solutions in a
cone and plate geometry.Comment: 23 pages, to be published in Journal of Rheolog
Dark-field transmission electron microscopy and the Debye-Waller factor of graphene
Graphene's structure bears on both the material's electronic properties and
fundamental questions about long range order in two-dimensional crystals. We
present an analytic calculation of selected area electron diffraction from
multi-layer graphene and compare it with data from samples prepared by chemical
vapor deposition and mechanical exfoliation. A single layer scatters only 0.5%
of the incident electrons, so this kinematical calculation can be considered
reliable for five or fewer layers. Dark-field transmission electron micrographs
of multi-layer graphene illustrate how knowledge of the diffraction peak
intensities can be applied for rapid mapping of thickness, stacking, and grain
boundaries. The diffraction peak intensities also depend on the mean-square
displacement of atoms from their ideal lattice locations, which is
parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a
suspended monolayer of exfoliated graphene and find a result consistent with an
estimate based on the Debye model. For laboratory-scale graphene samples,
finite size effects are sufficient to stabilize the graphene lattice against
melting, indicating that ripples in the third dimension are not necessary.Comment: 10 pages, 4 figure
Home Network Management Policies: Putting the User in the Loop.
Home networks are becoming increasingly complex but existing management solutions are not simple to use since they are not tailored to the needs of typical home-users. In this paper we present a new approach to home network management that allows users to formulate quite sophisticated comic-strip policies using an attractive iPad application. The policies are based on the management wishes of home users elicited in a user study. Comic-strip policies are passed to a Policy engine running on a new Home Network Router designed to facilitate a variety of management tasks. We illustrate our approach via a number end-to-end experiments in an actual home deployment, using our prototype implementation. © 2012 IEEE
Six simple guidelines for introducing new genera of fungi
We formulate five guidelines for introducing new genera, plus one recommendation how to publish the results of scientific research. We recommend that reviewers and editors adhere to these guidelines. We propose that the underlying research is solid, and that the results and the final solutions are properly discussed. The six criteria are: (1) all genera that are recognized should be monophyletic; (2) the coverage of the phylogenetic tree should be wide in number of species, geographic coverage, and type species of the genera under study; (3) the branching of the phylogenetic trees has to have sufficient statistical support; (4) different options for the translation of the phylogenetic tree into a formal classification should be discussed and the final decision justified; (5) the phylogenetic evidence should be based on more than one gene; and (6) all supporting evidence and background information should be included in the publication in which the new taxa are proposed, and this publication should be peer-reviewed
Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model
Several firing patterns experimentally observed in neural populations have
been successfully correlated to animal behavior. Population bursting, hereby
regarded as a period of high firing rate followed by a period of quiescence, is
typically observed in groups of neurons during behavior. Biophysical
membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural
populations involves thousands of equations and can be very expensive
computationally. For this reason, low dimensional population models that
capture biophysical aspects of networks are needed.
\noindent The present paper uses a firing-rate model to study mechanisms that
trigger and stop transitions between tonic and phasic population firing. These
mechanisms are captured through a two-dimensional system, which can potentially
be extended to include interactions between different areas of the nervous
system with a small number of equations. The typical behavior of midbrain
dopaminergic neurons in the rodent is used as an example to illustrate and
interpret our results.
\noindent The model presented here can be used as a building block to study
interactions between networks of neurons. This theoretical approach may help
contextualize and understand the factors involved in regulating burst firing in
populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded
as separate file
Teleology and Realism in Leibniz's Philosophy of Science
This paper argues for an interpretation of Leibniz’s claim that physics requires both mechanical and teleological principles as a view regarding the interpretation of physical theories. Granting that Leibniz’s fundamental ontology remains non-physical, or mentalistic, it argues that teleological principles nevertheless ground a realist commitment about mechanical descriptions of phenomena. The empirical results of the new sciences, according to Leibniz, have genuine truth conditions: there is a fact of the matter about the regularities observed in experience. Taking this stance, however, requires bringing non-empirical reasons to bear upon mechanical causal claims. This paper first evaluates extant interpretations of Leibniz’s thesis that there are two realms in physics as describing parallel, self-sufficient sets of laws. It then examines Leibniz’s use of teleological principles to interpret scientific results in the context of his interventions in debates in seventeenth-century kinematic theory, and in the teaching of Copernicanism. Leibniz’s use of the principle of continuity and the principle of simplicity, for instance, reveal an underlying commitment to the truth-aptness, or approximate truth-aptness, of the new natural sciences. The paper concludes with a brief remark on the relation between metaphysics, theology, and physics in Leibniz
Exploring Metacognition as a Support for Learning Transfer
The ability to transfer learning to new situations lies at the heart of lifelong learning and the employability of university graduates. Because students are often unaware of the importance of learning transfer and staff do not always explicitly articulate this expectation, this article explores the idea that metacognition (intentional awareness and the use of that awareness) might enhance the development of learning transfer. Our exploratory study includes results from a survey of 74 staff and 118 students from five institutions in Australia, Belgium, UK, and USA. Our data indicate that many staff and a majority of students do not have a clear understanding of what learning transfer entails, and that there are many mismatches between staff and student perceptions, attitudes, and behaviors regarding learning transfer. This helps explain why learning transfer does not occur as often as it could. We found significant positive correlations between thinking about transfer and thinking about learning processes and the likelihood to use awareness to guide practice. These support the idea that metacognition might enhance learning transfer. We offer suggestions for future scholarship of teaching and learning
Nova Geminorum 1912 and the Origin of the Idea of Gravitational Lensing
Einstein's early calculations of gravitational lensing, contained in a
scratch notebook and dated to the spring of 1912, are reexamined. A hitherto
unknown letter by Einstein suggests that he entertained the idea of explaining
the phenomenon of new stars by gravitational lensing in the fall of 1915 much
more seriously than was previously assumed. A reexamination of the relevant
calculations by Einstein shows that, indeed, at least some of them most likely
date from early October 1915. But in support of earlier historical
interpretation of Einstein's notes, it is argued that the appearance of Nova
Geminorum 1912 (DN Gem) in March 1912 may, in fact, provide a relevant context
and motivation for Einstein's lensing calculations on the occasion of his first
meeting with Erwin Freundlich during a visit in Berlin in April 1912. We also
comment on the significance of Einstein's consideration of gravitational
lensing in the fall of 1915 for the reconstruction of Einstein's final steps in
his path towards general relativity.Comment: 31 p
- …
