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Diffusion in a generalized Rubinstein-Duke model of electrophoresis with kinematic disorder
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Using a generalized Rubinstein-Duke model, we prove rigorously that kinematic disorder leaves the predic-
tion of the standard reptation theory for the scaling of the diffusion constant in the limit for long polymer
chainsD«L ~2 unaffected. Based on an analytical calculation as well as on Monte Carlo simulations, we
predict kinematic disorder to affect the center-of-mass diffusion constant of an entangled polymer in the limit
for long chains by the same factor as single particle diffusion in a random barrier model.
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INTRODUCTION tential energy due to interactions between chain and environ-
ment;(3) entropically favorable regions of low entanglement

The derivation of large scale properties of polymer syS-yangity: (4) relaxation of the environmentconstraint re-
tems, such as viscosity and diffusion constant out of micro ase

scopic models, is among the basic problems of polymer sci- Numerical investigationgl6] showed that entropically fa-

ence. For entangled polymers in gels or melts, de Gefrjes : . .
predicted scaling laws for the dependence on the polyme\fpr"’lb.Ie regions can for short .chamf substgnhally I:)wer the
length L for viscosity (o<L3) and diffusion constanti} diffusion constant by the creation of “entropic traps.” So far,

«L~2). These scaling laws are assumed to be valid for th&onclusive investigations of diffusing _polymers, Io_ng enough_
limiting case of polymer length going to infinity. In experi- to span several such traps, are missing. Constraint release is
ments, the apparent scaling laBs<L 24 and 7=L3* are conS|dergd to be of minor importance in gels but needs to be
found[2—4]. However, the experimental findings do not con- Self-consistently taken into account in mefts7]. Schder,
tradict the predictions of reptation, as a crossover due t@aumgatner, and Eberf18] numerically investigated the ef-
decreasing finite size effects with increasing chain lengtffect of kinematic disorder, i.e., disorder which affects the
cannot be ruled out3]. Presumably, contour length fluctua- mobility of the chain segments while leaving the equilibrium
tions (CLF) are one of the causes for the deviating scalingdistribution of chain configurations unaltered. Their investi-
exponent for finite chain lengtf6—7]. In the framework of gation shows that the reptation prevails in presence of kine-
the repton model introduced by Rubinst¢B9] and Duke matic disorder. However, due to being based on Monte Carlo
[10,17] (further on to be called RD modelwhich incorpo- (MC) simulations and thus relatively short chains, no quan-
rates CLF, it is possible to calculate viscosity, diffusion co-titative result could be obtained about the modifications the
efficient, and other quantities of interest. A good agreemendisorder would cause to the reptation prediction for the dif-
with both theoretical and experimental results is foundfusion constant in the long chain limit. As reptation is shown

[6,7,12,13. Using the RD model with periodic boundary to prevail, the scaling lim DL?=c must remain valid.
conditions, Kooiman and van Leeuwgt| analytically cal-

culated the proportionality constaatfor the diffusion con-
stant in the limit for infinite chain length: Ii[erDLzzc.

The aim of this paper is to calculate the coefficierfor a
polymer diffusing in a disordered environment exhibiting ki-
nematic disorder. This means that we are interested in the
They foundc=w/(2d+1), d being the dimensionality of behavior of the chain in the long chain length limit originally
the entanglement network anda model constant defining envisaged by the standard reptation theory. Some of the re-
the time scale. Building upon this result, Roder and Spohn  sults presented here in detail were briefly reported in an ear-
[15] rigorously derived the leading order term irL1for the  lier paper{19].
diffusion constant in the RD model and furthermore pro- The paper is divided into six sections: In Sec. I, the defi-
posed a scaling for the finite size effec®L?—W/(2d nition of the model is given and the master equation for the
+1)«cL A, where 1/2<g<1. All results mentioned above chain dynamics is presented in terms of the quantum Hamil-
were obtained under the assumption that the entanglemetdnian formalism[20]. This master equation yields the sta-
network which is topologically restricting the polymer is tionary distribution of chain conformations as shown in Sec.
regular and static. Real entanglement networks such as gells The model with periodic boundary conditions is analyzed
or melts are disordered. The effects of a disordered environin Sec. Ill. Adapting the strategy in Ref14] for obtaining
ment can be manifold:1) Spatial variations of the mobility the diffusion constant for the periodic system yields a lower
of the “defects” of stored length(2) locally fluctuating po-  bound on the diffusion constant for the original system. Sec-
tion IV is devoted to deriving an upper bound to the diffusion
constant by generalizing a variational approach used in Ref.
*Electronic address: r.willmann@fz-juelich.de [15] for the ordered system. In Sec. V, Monte Carlo simula-
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ton. Note that we do not assign different energies to the
reptons when residing in the cells. This choice of quenched
disorder guarantees that only the mobility of the reptons, but
not the equilibrium configurations, is affected, as will be
seen below. Let there beeN different possible hopping
ratesW,, which are distributed randomly and occur with a
probability f (W,) throughout the lattice. We demand that the
disorder average&lW)=3=7_,f(W,)/W, and{1/W?) (the
mean hopping time and its second momeare finite.

The RD model is used to describe the dynamics of an
entangled polymer chain under the influence of an external
electric field. A common example is DNA under electro-
phoresis conditions where the reptons carry a charge each
and develop a drift velocity along the direction of an applied

FIG. 1. Two-dimensional representation of a kinematically dis-electric field. Let the field be oriented along the (111) diag-
ordered lattice with a reptating polymer chain and the lattice gagnal of the cubes. We denote tfémensionlessenergy gain
mapping. Arrows indicate possible moves of the reptoBs. of 5 repton when moving from one cell to another along the
=expEf2). direction of the field a€. By local detailed balance, moves
across a cell boundary with assigned hopping Yéfealong
ttltl](g field happen with raté/ expE/2), those in the opposite
direction with rateW, exp(—E/2) [10]. By projecting the
reptons’ positions on the direction of the field, their relative
coordinates can be denoted as a one-dimensional lattice gas
with L sites by the following prescription.

(1) If the projected link between adjacent reptarendi

The RD model is a discretized model for reptation, i.e., it+ 1 is oriented alongagainst the field direction across a cell
describes the dynamics of a polymer in an entanglement nepoundary with assigned raw#,, sitei of the lattice gas is
work. This network is assumed to be regular and static. Irassigned the valug = o (y;= — a). We interpret values: «
three dimensions, it has the shape of a cubic lattice, wheras particles.
the polymer is forbidden to cut through the edges of the (2) If adjacent reptons andi+1 occupy the same cell,
cubes. The faces of the cubes can by penetrated by the chdig., their projected positions coincide, the link is represented
(see Fig. L The polymer itself is assumed to consistlof in the lattice gas ag;=0 at sitei. We interpret a site, which
+1 “reptons,” i.e., segments of about the entanglements assignd a 0 asbeing unoccupied.
length, which equals the lattice constant of the cubic lattice. Thus, theL +1 coordinates of the reptons in the direction

The model defines dynamical rules for the reptons’ mo-of the field are translated into the equivalent set of the rela-
tion. The dynamics on a smaller scale, i.e., high frequencyive coordinates manifest as the assignment of «, or 0 to
Rouse modes, is averaged out. In this sense, the RD modeltide L sites of the lattice gas plus the center of mass coordi-
an effective model. The dynamical rules for the reptons ar@ate’s component in field direction. The dynamics of the rep-
the following. tons translates into the lattice gas picture as follows. In the

(a) Each cell occupied by the chain must contain at leasbulk, particles of sort=a hop to the left with rate
one repton to ensure the connectivity of the chain, since th¥V/,exp(*=E/2) and to the right with rateV, exp(+E/2),
length represented by a repton equals the lattice constant wfhere each site can be occupied by at most one particle. The
the cells. The sequence of occupied pores corresponds to tead dynamics in the lattice gas picture needs some care.

tions of the polymer diffusion in kinematically disordered
environments are presented. The last section addresses
dynamics of internal chain segments.

I. ALATTICE MODEL FOR REPTATION WITH
KINEMATIC DISORDER

tube as in the standard reptation theory. Assumingy; (y,) to be nonzero, the only possible move is
(b) End reptons can move to adjacent cells provided rulghe retraction of the end repton to the cell occupied by it's
(a) is not violated. neighbor{rule (a)]. This retraction, being a particle annihila-

(c) Interior reptons can move to cells occupied by thetion event in the lattice gas picture, happens with the same
neighboring reptons if allowed by rul@). This ensures the rate as the respective move in the bulk. Assunyingy, ) to
dynamics to be reptation, as any movement in the interiobe zero, the end repton can, according to ille move to
requires multiple reptons to occupy the same cell, whichany of the 21 adjacent cells. For half of these, the move
means that there is some excess “stored length” availabldeads to links being along the field direction, the other half
This corresponds to the motion of defects in the original deagainst it. The probability of the chosen move leading to the
Gennes reptation model. crossing of a cell boundary with rai%, being assigned to

All moves are assumed to be thermally activated. In ouit is f(W,). Thus, the move of the repton, being
model, the cubic lattice representing the entanglement net particle creation event in the lattice gas picture,
work gets kinematically disordered by assigning an indi-leads toy; (y.) changing from 0 to*a« with rate
vidual energy barrier to every boundary between adjacenéxp(+E/2)f(W,)W, d[exp(E/2)f(W,)W, d]. This choice
cells. These barriers have to be overcome by a crossing repf boundary dynamics is, on an average, correct, but neglects
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012 — T L trast to the original projected repton model used by Rubin-
| e 2dlattice | | stein, which allows only for the computation of the curvilin-
j = RD model ear diffusion constant along the contour of the chain. In the

0.1 - Rubinstein model, additional assumptions are necessary to

relate the curvilinear to thé-dimensional diffusion constant.
r i ] Our model as well as the RD model allows for computation
of the latter quantity within the model.

r T Il. QUANTUM HAMILTONIAN AND STATIONARY STATE

0.09 % I . The model introduced in the preceding section describes a
i % Markov process and thus the dynamics can be written in

I | form of a master equation. For convenience, we will use the

P T N H O R S IR quantum Hamiltonian formalisi20] to write down the mas-

ter equation at zero electric field and solve for the stationary

L state.

FIG. 2. Comparison between the diffusion coefficients for simu- At each site _Of the lattice gas with lendth2o +1 value_s

lations of the disordered RD and two dimensional lattice model. [OF ¥i are possible. Therefore, the state spAceas the di-
mension (Zr+1)". Every 5 e X is assigned a vectdr) and

the actual local structure of the network. In order to verify @ transposed vectdr|. These vectors constitute a basis for
that the model is correct on long time scalas relevant for ~ the space of system configuratiodsA probability distribu-
the center-of-mass diffusignwe performed Monte Carlo tion P(%)=P, can thus be written as a probability vector
simulations comparing the diffusion constant of our pro-
Jepted model Wlthd'—2 at different Q|sorder dlstrlbutlpns IPy= D P(7)| 7). 1)
with a polymer chain moving according to the dynamics of T
the repton model in a two-dimensional lattice with random
but fixed hopping rates assigned to each cell boundary. It Let a summation vector (s| be defined as
turns out that although the results differ for small chaibs ( <S|:27]EX<7’|' Normalization of the probability vector is
<10) they coincide within the statistical errors for longer given if (s|P)=1. The generator for the dynamics of the
chains. This legitimates our choice of boundary dynamics fosystem is the matrixd. The off-diagonal elements of the
investigating the behavior of long chains. Figure 2 shows amatrix contain the&negative transition rate$(#», »"') from a
example where a binary disorder distribution witly;  staten’ to #:
=1/2, W,=1/4, and(W)=3/8 was chosen.

Every move of a particle in the lattice gas leads to a (nlH|n")=H, , =—t(n,7"). 2
change in the component of the center of mass coordinate of ) .
the repton chain along the field direction. The diagonal elementsl, , contain the sum of all the

(1) Particle of typea moving to the right(left) decreases 0utgoing rates:
(increasepx by 1/(L+1), as this is equivalent to a repton

moving downward(upward. As there areL+1 reptons, <’7|H|’7>:Hnn: E t(n', 7). 3)
each contributes 1l(+1) to the center of mass position. g #g

(2) Particle of type—a moving to the right(left) in-
creasegdecreasasx by 1/(L+1). It is easily checked that conservation of probability, i.e.,

In the subsequent sections, we will calculate the drift ve{S|H=0 in the language of the quantum Hamiltonian for-
locity v of the center of mass coordinate in presence of afnalism, is fulfilled byH. The master equation
applied electric field, and by employing the Einstein relation 4
the zero-field diffusion constant. When calculatingwe re- o _ ' e
strict ourselves to the linear response regime, ignoring dt Py(D)= et ;ﬂex (17,7 )P (O =t(n", )Py (V)]
higher-order field dependences. In order to calcuatenly (4)
the change in the center of mass coordinate along theXield
has to be known, but not the absolute value itself. Whereadescribing the Markovian dynamics of the system can be
the latter cannot be known from the lattice gas, the former isvritten as
given by the difference of the currents of positive particles

j* and that of the negative ongs: v=j —j*. As the d _

choice of the field direction is arbitrary, by use of the Ein- &“D(t))_ HIP(D)). (5)
stein relation the model allows for computing the zero-field

diffusion constant along a distinct directiondrdimensional The stationary statéP*) is thus characterized by the

space. As zero-field diffusion is isotropic, this immediately equation
yields thed-dimensional diffusion constant. This is due to
distinguishing between particles of typasand — « in con- H|P*)=0. (6)
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In this formalism, the expectation valugF(t))
=3 ,F(n)P(n,t) of an operatoF is written as.follows[ZO]. .
The operator=:X— X is represented by a diagonal matrix
F=X,F(n)|n)(n|. Then,
(F(t))=(s|Fe "|P(0))=(sle"'Fe ™|P(0)). (7)
Let the time-dependent operate(t) for t>>0 be defined
as

F(t)=e"tFe Ht, (8)

(F(t)) is an expectation value that it is not only averaged

PHYSICAL REVIEW E 67, 061806 (2003

1 1
P11(1) P1a(L)
PEed 0= P1-2(1) | @ ®| Pr-a(L)
P2,1(1) Poa(L)
1
X

L o
11
i=1

1+ 2, [Paali)+Pe-1(1)]

(12

over possible realizations of the process but also over the

initial states according té&(0). In the following, it is as-
sumed thatP(0))=|P*), so that

(F()=(s[F()[P). 9

For our model, we choose a tensor product basis as fol-

lows. Let at each site of the lattice gas the unit veaor
denote y;=0, e,,, denote y;=a and e,,.; denote
y;i=—a. A state vector for a statgy=(1,—3,...,5-2),
for an example, then can be written pg)=e,®e;® - - -

®ep®es). Using this basis, the following operator creates a

particle of typea at sitei, provided it was previously unoc-
cupied:

ab (=18 - ®E,,,®- - ®1=E,, (i), (10)
i—1 L—i
whereE,, 1y is the matrix with a single entry 1 at rowa2
and column 1. Similarly, the operatora;_l(i)
=E(2q+1,1)(1) Creates a particle of type a, if possible. The
corresponding annihilation operators at siteare a, 4(i)
=E (1,20 (i) anda, _1(i) =E 2+1)(i). To formulate the di-
agonal part of the quantum Hamiltonian, the matriaés)
=E(,1)(1), V1(1) = E(2a,24)(1) and Vq,-1(1)
=E(2a+1,20+1)(1) are employed. Thus, the quantum Hamil-

into Hyped Poped0)) =0 leads to a very simple set of equa-
tions for the probabilitiep,, ., and one finds

1 ®L
df(W)
oo | dfwy 1
|Popen(0)>_ : (2d+l)|‘. (13)
df(W,)
df(W,)

The geometrical equilibrium conformation of the chain
depends on the probability of occurrence for links between
reptons along or against the field, irrespective of the assigned
hopping rates of possibly crossed cell boundaries. This
means we have to consider the overall probability for par-
ticles of positive sign at a site, which B;_,f(W,)d/(2d
+1)=d/(2d+ 1), or negative sign, being alst/(2d+ 1),
respectively. These are equal to the probabilities found for
the disorder free RD mod¢R1], which shows that the cho-
sen kind of disorder is indeed kinematic disorder, as it influ-
ences only the mobility but not the equilibrium configura-
tions of the chain.

Note that it is not possible to compute the stationary state

tonian for the model defined in the preceding section at zerfor the model with a nonzero field at an arbitrdry There-

field reads

L—

[N

i=1 s=

Hopen ) 2 Wal— g, (i + Dag(i)

—al (Nags(i+1)+u(i+1)v,)

+U(i)v,o(i+1)]+ 21 21 {W,df(W,)

X[—al (1) +u(1)]+W,[—a, (1) +v,1)1}

+ 2 2 W, df(W)[—al (L)+u(L)]

s=*x1 a=1

+Wa(_aa,S(L)+va,S(L))}' (11)

Plugging a product measure ansatz

fore, the Einstein relation (L)(d/dE)({v(E)))=D is not a
feasible way of straightforwardly computing the diffusion
constant. Extra input is needed to overcome this problem.

IIl. MODEL WITH PERIODIC BOUNDARY CONDITIONS

In this section, we adapt a calculation due to Kooiman
and van Leeuwehnl4] for the original RD model with peri-
odic boundary conditions to the case with kinematic disorder.
The quantum Hamiltonian for the periodic system at zero
field reads

o L
Hper= > 2 W —al (i+1)a,i)
s=*1 a=1i=1
—al (i)a,s(i+1)+u(i+1)v,i)

+u(i)v, (i+1)]. (19
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Plugging|P3,.{0)) as for the open system into the equa-  The matrix for the annihilation of a particle at site i is
tion Hpe | P3,e{0)) =0 for the periodic system shows that at accordingly given by
zero electric field, the stationary state of the open system is

also stationary with respect to the dynamics of a correspond- o 1 T 0

ing periodic system. In a periodic system, the phase space is 0 0 1

nonergodic, as neither the order nor the number of occurring . . . .

particles on such a ring can be changed. Therefore, every b= ° - - - B (16
connected subset of the phase spdckannel”) has its own 0 0 0 B

stationary state. We can calculate the stationary state for the
periodic system in presence of a fielel by mapping the

system to a disordered zero-range process, as introduced by
Benjamini, Ferrari, and Landini22]. This means that the  For constructing the diagonal part of the Hamiltonian, we

Einstein relation can be employed to obtain the diffusion,eed the following type of matrignote that<s|biT=<s|1and
constant in the periodic case. Here, the definition of the driﬁ(s|bi:(s| m):

velocity of the center of mass and the corresponding diffu-

sion constant are induced from the system with open bound- 0 o0
ary conditionsv=j —j*. 0o 1
Instead of characterizing the system by the spins on the
lattice gasy=(y;, . ..,yL), it can equivalently be character- m;= P o ... (17)
ized by the sets=(s;, ..., ) containing the signs of the : 0 1
nonzeroy;, w=(wq, ... ,w;) containing the absolute val-
ues of thesg; andn=(n4, ... ,n.) wheren; amounts to the

number of “0” betweens; ands; ., on the lattice gas. Thus, !

every lattice gas configuration on a ring can be translated A hopping event from sité to sitei+1 is described by
into a configuration on a lattice of lengtf in the zero-range  the combined action of the matricesandb/', ; This yields

picture. Sitei carriesn; zero range particles and is separatedthe following expression for the quantum Hamiltonian:
from sitei+1 by a bond characterized ks, ; andw; ;.

The total numbeKK of zero-range particles must equal the M . 1y

total numberL—M of 0 in the lattice gas=M jnj=K=L Hzr:;1 (—his 1Dy bywi 1 —hi 5 biby Wiy

—M. The dynamics of the lattice gas picture translates into

the zero range picture as follows. The configuration +h hwi g m+hy Wi M), (19
(....nj,nj;4q,...) changes to (..,nj—1n;,1+1,...) )

with rate h; w5 and to (...nj+1n;,,—1,...) with A yet unnormalized product ansatz

ratethWjH,. whereh;=exp(—Es/2). This means_that the 1 1

random hopping rates, as well as #)e are not assigned to

individual particles, but to bonds between sites in the zero- Z Zm

range(zr) picture. AtE=0, zr particles move as in a random [Py = Zi ® -Q zf,l (29

barrier energy landscape. Moves of the zr particles cause
changes of the center of mass coordinate as defined above. A
zr-particle hopping to the right across a bond wih>0

(s;<<0) increasesdecreasesthe center of mass position by yields
1/L. Conversely, a zr-particle hopping to the left across a "
bond withs;>0 (s;<0) decreasefincreasesthe center of L i+1 *

mass positi]on by 1/, AS with the field free case of the open Ha PZT>_;1 ( - hiJflw”lz_imi| Pz

system, we use a quantum Hamiltonian and a tensor basis for

the state space to compute the stationary state of the zr lattice 1 Zi * 1 *
of length M with a givens andw. Let e,(i) denote an un- _hi+1wi+1mmi+1|Pzr>+hi+1wi+1m‘| Pz
occupied sitd andey,(i) wherem>1 a sitei occupied by
nj=m-—1 particles. Here, vectors are infinite dimensional.
The matrix for the creation of a particle at site i is then given

by

+hi L Wi My P;r>>

M
Zit1
0 O ... 0 ... :;1 _hi+1Wi+1|Z_imi|P§r>
1 0 0
: . .. : -1 Zi-1 * -1 *
biT: : : : : T . (15 _hi WiTmi|Pzr>+hi+1Wi+1mi|Pzr>
0 1 0 '
_ +hw;m;| P’Z*r)) : (20
i
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|P* ) is stationary provided 1M
(v(sw,K,M))=(s| L iZl (si+1hihwis1bibl
his1Wis1Zip o 'wizio =hihwi gz - hiwz;.

(21) : 1
= Si+ 1N+ 1Wi 1+ 10i4 1D )®(K)|Pzr>c_
Applying a general solutiofi23] to the case at hand and
including normalization, the stationary state for a channel

characterized bg andw and with a total number of particles —(S| E [Si+1hi Wi 1O (K)bib],
K yields
1
M —Si 1N Wi 1O (Kb 10 1| PE ) —
PrswKM)= 3 TL 2N, ) o

1 a Z;
1 :EZ Si+1hi+11Wi+12__I
X o , (22) i+1
> I1 Zini X(s|m1|O(K)PZ) = Si 1 1hi s 1 Wi g
(g, .. ) 1=1
'”<s|m|®(K)P = (26)
where zt/ |
M 1 .
z=> H h2 23) Now, we have to calculate the expressgnfor the prod-
T i e uct state:
The primed sums are meant to be summations under the M
constraintz{_ ;n;=K. Knowing the stationary state for each Ck= Z ' H Zi”i , (27)
channel, the drift velocity for the individual channels can be (ng,...ny) =1

computed. In the lattice gas picture, every time a partcle

=—1 (s;=1) is hopping to the rightleft), it changes the \yhere the primed sum again means summing with the con-
position of the center of mass by L/-1). The opposite  girgintsM ni=K
iz .

process, i.e., a particlg=—1 (s;=1) hopping to the left A similar type of summation is found when regarding the
(right) changes the center of mass position bt/(L+1).  gums of the type

Therefore, as mentioned above=j —j 7, i.e., the differ-
ence between the currents of negative and positive particles.

. . M
This operatow translates to the zr picture as follows: O(K) " 1 _
(slmg——IP3y=" X" =1l 2, (@9
1 M K Ny, ... ny) CK j=1
A ;1 Si+ Wi 1(hi bl =iy 1byy 1b]).

where the double primed sum has the constraEl}’fglnj
=K andng#0. A straightforward calculation of the sums is
impossible due to the constraints. To simplify the task, we
can profitably use the following identifyL4]:

(24)

Thus, the drift velocity of a given channel is given by

13 -1 T M M
<U(SerKaM)>:<SEZ (Si+1hi Wit 1bibyy g z, H a1 da H
= Zi=— [ Z:
(g, -, nv) i=1 ! 2i okt (ng, ... nw) 1= () :
S|+1h|+1W|+lb|+le)®(K)|P r>_ (29)
(25 Thus, we can transform the sums into integrals:
Here,® (K) projects on those states |¢¥;,) which have a "
constant number of particlés andcy is the normalization. c 1 jg da 1 (az)"
So, O(K)/ck|P3,)=|P%(s;w,K)). Using this form allows Ko2m I oKl (g, S ot i
us to make use of the fact that due to the combined effect of
b; bT which is to redistribute the particles without changing 1 da M 1
thelr number, we can commubc;bJr and®(K). This allows “ o aK+1]];-[1 1-az
us then to apply the matrices to the product measure, where
its effect is easy to see, =Qx M (30
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OK) M
<S|mﬁ Cx |Pzr> Zizz H h|+k
=1 hI+JWI+j
M
1 1 da M -1
= _ N 1 E
Ck 2i jg okl (nl,...;M),nﬁsﬁO j]';[l (aZJ) J :2 ( 23J+| H (1—Esyyt+---)
j=1 Witj
% M
e P2m T ok 11 az =2 WIH+O<E>=z+O(E>. (35)
QK 1M . . .
Zg 0 (31 Here,z is defined as the zero field value nf. The fact
K,M

that all z; are equal at zero field is decisive for the explicit

. . ) _ integration ofQy y . We obtain
The integralQy \ satisfy the recursion relation, ’

1 de M 1 M+K-1
Qi.m=Qk,m-11ZvQk-1m (32) Qk.m oy § aK“jl;[l 1-az M—1 )z
An explicit solution of this relation yields (36)
M M’ It is now clear how to proceed with evaluating
- - v(s,w,K,M)), as
:Z Z:(+M llljl (Zi_zl) 1. (33) < ( )>
K+tM-2)
The primed product indicatés#|. From this point onwards, Qk-1m M—1 |° K 1
we are not going to carry through the complete calculation Q T TTKEM -1 “KiM-12z (37
for (v(s,w,K,M)). We will expand it into a series i& and KM )ZK
keep only first-order terms, which is sufficient for employing M-1
the Einstein relation. We start from the expression for
(v(s,w,K,M)) after having inserted the result for  This yields for(v(s,w,K,M)):
(s|m®(N—L)/ck|P7,):
1
4 Qe (oW M) =] 3, 5By 5 +OE
<U(S,W,K)>— 2 S|+lh|+1W|+l Zit1—~
Ziyq QK M
L ES A +O(E? 38
Z|+1 QK 1M L K+M—-11z (9. (38)
S|+1h|+1W|-%—:L Q
K,M
LM This is our final expression fg (s,w,K,M)). Knowing

the drift velocity for each channel characterizeddw, we
have to give each of these a weigh(s,w,K,M) when av-
eraging over the channels. Following an argument by Pra
Wz )QK iMm hofer[21], we show below that provided a configuration in
HATHEY Qo m the zr picture is weighted such that@t 0, its probability as
contained mPrln (sw,K,M)=¥(sw,K,M)P3.(sw,K,M)

-1
—2 Si+1(hiaWi 17

I_

M
E 2 1— —ES Qk-1m is equal to the probability of the corresponding state in the
Si+1[1—exp )] : :
Li= Qk.m lattice gas of the open system as givenRiy,. (0), for the
diffusion constants the following relation holdDhS"
S Qk-1m = pPer
= —[1 exp—ES) |—=— (399 =bL .

Qk.m When relating zr to lattice gas probabilities, it has to be
kept in mind that the periodic zr system hilssites, while

whereS=3M ,s;. For the second equality, we used the ex-the corresponding periodic lattice gas hasM sites. This

plicit form of thez; . The term in brackets is easily expanded means that a state of the zr system with probabidity can

into a series irE: 1—expESY=ES+O(E?). We keep only the be permutatedl times, where due to translational invariance

first-order term irE. This means that when we are expandingall resulting states have the same probability. A lattice gas

the expressiorQy_;/Qk m We need only to keep zero- configuration with probabilityy,; can be cycled through

order terms irE, as all other contributions will vanish when permutations leading to equal probabilities. Therefore, equal

using the Einstein relation. The only terms containign probabilities of respective configurations meandq,,

the Qi v are thez;, for which we find to first order irk: =Lq,4. The weight factor thus has to be chosen as follows:
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M IV. MODEL WITH OPEN BOUNDARY CONDITIONS

L M
Y(sw,K,M)= M ) L) f(wj). (39 A. Variational formula

(2d+1)*
In order to find an upper bound on the diffusion constant,
Thus, we find for the drift velocity, when averaged overwe follow the strategy of Ref[15]. The quantum Hamil-

the channels, tonian Hypen for our model in its representation using the
tensor basis can be decomposed into the sum of a diagonal
— part D and a nondiagonal onkl. Each of these can them-
v :% = o) W:(WE i) W (sw)(v(sw,K,M)) selves be split into a part describing those moves leading to
ton M v M an increase of the center of mass coordinate” (andD ™)
1 dv L\L—M M 1 and a respective part connected to a decrelstse &ndD 7).
= — — N+t - + -
—%L P M)L_l(%jﬂlf(qu Thus,H=D*+D —M*—M".

The following statemenit24] holds for the diffusion con-
(40  stantD:

This can be rewritten as

D=infy.q ————(D"+D"
) 9=0 2(L+1)2< )
_ 1
v=E > Q(M)M<E>. (41) 2
M=1 _ + _ - * *
(1 (SiD” =D 1glP*) +(slgHglP*)
Here,(Q(M) contains all the factors depending bhoc- —inf. F 45
curring in the previous expression afl/z) is a disorder =infgcoF[g]. (45)
average.Q)(M) is a function that is sharply peaked Ikt
=L/2 implying that in the limit for largeL, only terms with Here,() is the space of diagonal matrices with dimension

large M significantly contribute to the result. In the limiting (20+1)\. Thus, plugging in any diagonal matrixinto the
case ofl —oo invoking the central limit theorerremember  fnctional F[g] yields an upper bound ob. The challenge

that we demande@L/\W) and(1M?) to be finite yields is to chooseg such that the upper bound gets as small as
possible. Due to the dimensionality of the diagonal matrices

} 1 42) increasing exponentially with, an exact minimization is not
z/ M{IW)" feasible. Still, some information can be gained by observing

that the functional is convex and thus the minimizigg
Therefore, e () is the only matrix for whichSF[ g] vanishes. Choosing
0o such that

__i 1EM dM L)L—M 1 1 43
= (2d+1- \M/L-1 M <i> @ (s|goH=(s|[D"-D "], (46)
W

the variation vanishes. Unfortunately, this formula cannot be
solved forg,. We will show below how still some insight
can be gained from this equation. Introducing the madrix

Using the Einstein relation yields in the limit for larde

D(0)= 1 - 1 1 whered(y’|y)=(y’'|d|y) gives the change in the CMS co-
L(L—1) (2d+1) (2d+1)--1 < 1 > ordinate when a transition from statéo y' is made, and the
W matrix w, wherew(y'|y) denotes the corresponding rate, the
variational formula may be written as:
=D* i , (44
il 1
<W> D=inf> 2 w(y'ly)P*(y)[d(y'ly)+g(y)—9(y)]%

y'yeX
where D* is the diffusion constant for the ordered case @7
[14,15.

Thus, we have shown that Im _DL?=1/  whereg(y)=(s|gly). Following Ref.[21], we now prove
[(2d+1){1MW)] for the periodic case, which is a lower thatDPP®"=D%’;. To simplify the notation, we remark that
bound to the open case. Note that the fact@d/W) is the in our model with periodic boundary conditions as in the
same as occurring in the single particle diffusion constant fooriginal RD model, transitions from a given statare only
the random barrier model. In this model, random energy barallowed to a statg’ =y'' 1, where the sping; andy;_ , are
riers are assigned to bonds between sites just as in the irterchanged. Thus, the last formula applied to the periodic
picture of our problem. case reads as

061806-8
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X[d(y-" Hy) +g(y-t hH—a(y)1?

=2 w(y

yeX

+22 w(y
yeX

+o(y-tth—g(y)1?
=0.

1 L
DPfy=inf5 2 | 2 Wiy Hy)P*(y)
Ly P (y)[d(y®Yy) +g(y®h —g(y) ]2

X[d(y"* y)+a(y" H—g(y)1?|. (48

HEHy) PH (LAYt )
Here, each transition between states in a lattice gas of
lengthL+1 changes the cm coordinate byl/(L+ 1), as
there are as many reptons as bonds between them. In contrast
to this, in the open boundary case, there is one more repton
as there are bonds leading to the cm coordinate changing by

(51)

+1/(L+1) in any transition of a lattice gas of length

Here, transitions between states can not only occur by inte

changing spiny,; andy;, ; in the bulk but also by creation

and annihilation events at the ends. These events can equiva-

lently be viewed as interchanges of the spinsandy, ,
respectively, with “imaginary” sping/q andy, ., provided

Therefore, the diffusion constant of the periodic chain

Iywth lengthL+1 is a lower bound for the open chain with

lengthL.

B. Functional for diffusion with kinematic disorder

The space of diagonal matric€s from which an appro-

the rates for these interchanges at the ends are adapted suxtateg ) has to be chosen such thgtg] gets as small as
that these correspond to the creation and annihilation rates @ossible, has dimension ¢2+1)-. A scalar product orf)
demanded by the model. Taking the distribution at thecan be defined for arbitramyn,ne Q as(s|mn|P*). A basis

“imaginary” sites as for any other site in the lattice gas-
member that we have a homogeneous product meashes
introduction of a parameter

.

2d+1
1

if
for

|=0 or I=L

I=1,...L-1 “9)

leads to a fulfillment of this requirement, and the functional

for the diffusion constant of the open chain of lengtheads
as

Z w(y" FHy)P* (y)[d(y" " 2]y)

eX

open_
DL

;5 el

I\JII—\

+9(Y"'”)-9(Y)]2), (50

where w and d are as for the periodic case. Letting
:(yo, P

ing that asy, does not occur in the functional f@}%'; , the
averaging ofy, over P* yields 1 and thus does not change
the result:

per

DPPeTgl- D%l a]

=co< EX w

; (yoHy)P* (y)[d(y®Yy) +a(y®h — g(y)]z)
+c.

)d(y-t*1y)

yEX w(y-E 2 y) P* (y

EX w(y- Yy P (y)

ye

+g(yL'“1)—g(y)]2> -
X[d(y®Yy)+g(y*H—g(y)]?

=2 wiyHt Yy P*(y)
yeX

YL+1) for open and periodic system, and observ-

for Q) can be built from the matriceg,; (i) to y,,(i) acting
nontrivially only at sitei and the unit matrix. We specify
only the following:

. 1 |
Yoli)= 2d—+1E(2a,2a)(| )— 2d—+1E(za+1,2a+1)(l)

for a=1,... 0, (52

20+1

2d ) )
aar1Eea®t 2 57 Ean().

(53

Yora(i)=—

For the remainingr— 1 matrices, we demand that these
are chosen such that for @lb=1, ... ,2, i,j=1,... L,
anda+#bh, we have(y,(i)yp(j))=0 as well ag(y,(i))=0.

It is easily checked that the defined matrices are mutually
orthogonal. A basis for the space of diagonal matriQess
then given by

20+1

|

1'[l yi(ID[1,CiL, ... L}V jil,Nlg=0 V a#g|.

(54)

The choice of age Q fulfiling (s|[D*—D~]=(s|gH
leads toSF[g]=0. In spite of this relation not being solv-

able forg, information can be gained by observing tlat

contains subset§); i which are invariant tdH in the

------

........

filling (s|gH=(s|g’ isinQ; . too, where
20+1
Q|1 ..... i _Spar{ j]':ll yj(lj)“jc{la---a}

V jjl.Nlg=0 V a#Blj|=i

v j=l,...,o-}. (55)

061806-9
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By calculating(s|[D"—D~], we find that the minimiz-
ing go is in the subspaceeaj’:lﬂil ,,,,, i where, iy

=06k V k=1,...,0. Thus, the most general ansatz fpr
based on this information is

=0 |0'+1 """ |20’+l
XYor1(lgs1) Yoo+ 1(l2g+1), (56)

where the coefficient are real numbers and the sets
gy ... los11 are mutually disjoint.

C. Ansatz for g

The general ansatz given above fprontains too many

parameters for letting a minimization appear feasible. In-

stead, we use a generalization of the ansatz used thfera
[21] for the ordered RD model:

L+1

PHYSICAL REVIEW E 67, 061806 (2003

(o8

Dlg]= 2>

L
a=1 |(2d+1)2

f<wa>wa|20 ¢ :

L+1

2
+(a|a_a|a+l)_ (2d+ 1)(C|Cf|+l_cla+l,|))
2d ,,( N N
+ — C ,—C ,
(2d+1)2 % ol,k I+1k

2d N . 2
~(2d+1) (& (416 " C11,0.k))

7 2d
- n B _ ﬁ 2
+3§=:1 (2d+1) f(Wﬂ)Z (Ci— Cici+1)

4d2 " a @ 2
+ (2d+l)4 ;q (el,p,q_eH—l,p,q)

7 4d?
+2, ——f(W el ao—es 20,
P 2dir1e P2 (S0~ Caiia) “

(58)

A L+1, . . The free parameters are the coefficieafs c,,, and
g= 21 20 ary (i) + > CrYalK)Yora(K') &5 ».q Which are, generalizing results in R¢L5], chosen as
a=1|i= kk'=0 ” _
I
1 2d
L+1 @ o a
) ~ N ~ ai+l:2 __—(C||+1_C|+1|))a
o - =+ + ’ |
* o Spaa(@Vo1(PYora(@ . (57) Foll+l (2d+1)
ag=o0, (59
(2d+1)C i\\L+1—]j o
The primed sums indicate the summation variables to be | | — 54— 1-g n L 102 ri<j
mutually different. Note that this ansatz reflects a particular Cij= (L+1)
choice of parameters for the general ansatz. Inserting the trial —Cli1miLs1-j for i>],
function intoF[ g] yields the following functional: (60)
|
2d+1)°C [o\(L+1-p)(L+1—
(2d+1) ,(_( PILFL=0) (o
e 0q= 4dn n/ (L+1)%L-o0) (61)
~€l 1 oL+1-qL+1-p for p<g<o.
|
Here,g is a monotonically decreasing smooth function on 1
the real numbers witly(x) =1 for x<0 which is decreasing DPRY< 24+ 1) ——(W), (63
exponentially fast fox— . This function has the property ( ) (L+1)
that

where(W) is the disorder average.

S

=0(n), (62

5 ol

wherer s are integers and=(L +1)%’% Given this choice,

the following upper bound fob{}"is found:

061806-10

This completes the proof that asymptotically<1/L2 in
the presence of kinematic disorder.

V. MC RESULTS

In the case of the ordered RD model, the resultsidan
the periodic cas€l4] coincide to leading order with the up-
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' ' ' ' ' ' ' ' mation. For understanding the dependendence of the diffu-
13 sion coefficient on kinematic disorder, which affects mostly
the bulk of the polymer chain, it is sufficient to focus on the
o <1/W>=17/2| | hydrodynamic behavior of the bulk reptons. In order to study
R . :%//%i:?/z this limit, it is convenient to first investigate the associated
g zero-range process and then translate the result into the hy-
v T 7 drodynamic limit of the exclusion process.
o= For the zero-range process described in Sec. Il WEth
) _ =0, the average number of particlegt) at sitei obeys the
exact time evolution equation given by
ML T T api(t)
0= = % o Wizia(D Wi gz (0 = (Wit Wi 1)z (1),
T (64

L wherez;(t) is the probability that sité is occupied at time.

FIG. 3. D(0)LZ(1MW) vsL for the cases as described in the text. It IS known that in the steady state, the occupancy probability
The lower bound for all three cases is given by the solid line. TheZ ~ IS spatially uniform and can be related to the steady state
dotted line is the upper bound for the case witiW)=17/2 and  particle density a$19]
the dashed one the upper bound wi&V)=9/2. The case with
(1MW) =1 is the ordered case where both bounds coincide. s p®

Z; e
1+ p;

(65

per bound for the open caf#5]. In our model, we managed
to give bounds oD which both scale with 1/% in the limit It follows that the steady state density profile is uniform in
for long chains. This implies that kinematic disorder does nospite of disorder.

ruin the scaling relation of the standard reptation theory. To understand the dynamics in the hydrodynamic limit of
Still, the numerical prefactors differ. We believe that it is thevanishing lattice spacing, we expand E64) to second or-
result for the lower bound, which correctly describes the dif-der in lattice constant and find

fusive behavior for long chains. This lower bound was ob-

tained by a rigorous calculation, while the upper bound re- p(x,t) d
sults from a variational treatment. Given that our conjecture gt ox
is true and for long chain® =1/[L?(2d+1)(1\W)], then

for any choice of disorder distributio)L?(1/W) plotted At large enough time, the system is expected to be in local
against the chain length is constant. We performed MC simuequilibrium so that we may assume the usual approximation
lations with different disorder distributions. The upper andfor z(x,t)—p(x,t) in the steady state to be valid(x,t)
lower bounds differ significantly for binary distributions. We ~p(x,t)/[1+ p(x,t)], where Eq.(65) was used. We are in-
compare in Fig. 3 the ordered case wil=1 (limit for terested in the density fluctuations about the steady state,
DL%(1MW)=1/3) to the casedV,;=1/16, W,=1, f(Wy)  Ap(X,t)=p(x,t)—p*(x) where p°(x)=p=K/M. Retain-
=f(W,)=1/2, (1W)=17/2 (upper bound foDL2(1W) is  ing the lowest nonvanishing term in the expansion of the
1.505, lower one 1/3) andW,;=1/8, W,=1, f(W,) preceding equation in powers afp(x,t), we obtain
=f(W,)=1/2, (1W)=9/2 (upper bound foDL?(1/W) is

0.844, lower one 1/3). These results suggest that in the long dAp(x,t) 1 9
chain length limit,D=1[L%(2d+ 1)(1W)]. gt (1+p)? X

dz(X,t)
X

(66)

dAp(X,t)
X

. (67)

The above equation describes a random walker in one di-
mension, diffusing in a random medium with bond-
The surprising result of the previous sections is the obsersymmetric hopping rated/(x). It can be shown that at large
vation that the effect of kinematic disorder on the collectivetime and length scales, the random walker can be described
behavior of all connected polymer segmentdtis leading by a single, effective diffusion constantD=1/(1
order in system sizehe same as on a simple pointlike object + p)%(1W)], provided(1/W) is finite [25]. Thus, we obtain
in the same disorder environment. In order to understand thithe bulk diffusion constant to be given i in the zero-
observation, we now consider the dynamics of the internatange process.
segments in the hydrodynamic limit of the vanishing lattice Regarding the site as particle and mass as hole clusters,
spacing. For the local concentration of reptons, one obtainhe above model maps onto symmetric exclusion process
from the usual ordered repton model in this limit Rouse dy-(SEP with particlewise disorder. We want to calculate the
namics[13] restricted to motion inside the tuldé&]. The  bulk diffusion constant in the SEP picture using the above
boundary dynamics, i.e., the hopping into and out of the tubeesults for zero-range process. Since the steady state density
describe the entropic tensile force acting on the chain endgrofile is uniform in both the pictures, the average local den-
and keeping the polymer in its stretched equilibrium confor-sity n; in the vicinity of the location of particlé in SEP is

VI. DYNAMICS OF INTERNAL SEGMENTS
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related to that in the zero-range processnas 1/(1+p;). presence of kinematic disorder, but with a disorder-
Then, the density fluctuation about the steady state in thdependent diffusion coefficient. This explains the occurrence
vicinity of particlei is given by of the same correction to the diffusion coefficient for the
long time behavior of the polymer chain as a whole.
ni=———Ap+0((4p)?). (69)
(1+p) CONCLUSIONS

We note that the above is true only at large enough times, as |t js the aim of this paper to disentangle the effects of the
was pointed out in a similar analysis for the tagged particlearious types of disorder, which one may expect to have
correlation function for SEP without disord26]. significant impact on the dynamics of systems of entangled
Using Egs.(67) and (68), we find that flexible polymers. We have focused on kinematic disorder
which leaves the equilibrium conformation unchanged com-
(69) pared to a hypothetical ordered entanglement network
(which could, in principle, be manufactured artificially by
placing a single polymer in an ordered array of obstacles on
Further, note thatx is the space index in the zero-range a surfacg For the periodic RD model with kinematic disor-
process, while it labels the particles in the SEP. The spacder, we computed the drift velocity in the presence of an
coordinatey in symmetric exclusion process is relatecktas  external field in the linear response regime. Knowing the
) diffusion constant for the model with open boundaries yields
~ "oy via the Einstein relation the drift velocity in this case. We
y f dxp(x’) +x, (70 have provedrigorously in terms of the RD model for repta-
tion) that the asymptotic length scaling of the diffusion co-
efficient of the polymer chain remains as predicted by the
P 9 standard reptation theory. By studying the hydrodynamic
—=(1+p)—+O0(An). (71 limit, we have shown that the individual polymer segments
24 y inside the tube perform Rouse dynamics in a disordered en-
vironment, which corresponds to a system of local random
barriers. Therefore, the amplitude of the diffusion coefficient
JAN(Y,t) 9 dAN(y,t) becgme§ dependent on the disorder in the same way a single
T:W[ y T} (72 particle in a random barrier system.

Using the random walker analogy, we obtain the effective

diffusion constan® at large times to be equal to(1/W) in
the symmetric exclusion process. K.J. wishes to thank the ForschungszentrurticBufor

This calculation shows that the internal segments of th&ind hospitality. R.D.W. thanks Deutsche Forschungsge-
polymer chain perform Rouse-type dynamics also in themeinschaft for financial support.

JAN(X,t) 1 J
dt (1+p)2 X

JAN(Xx,t)

()

which gives

Thus, the particle density fluctuations in the SEP obey
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