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Diffusion in a generalized Rubinstein-Duke model of electrophoresis with kinematic disorder
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Using a generalized Rubinstein-Duke model, we prove rigorously that kinematic disorder leaves the predic-
tion of the standard reptation theory for the scaling of the diffusion constant in the limit for long polymer
chainsD}L22 unaffected. Based on an analytical calculation as well as on Monte Carlo simulations, we
predict kinematic disorder to affect the center-of-mass diffusion constant of an entangled polymer in the limit
for long chains by the same factor as single particle diffusion in a random barrier model.
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INTRODUCTION

The derivation of large scale properties of polymer s
tems, such as viscosity and diffusion constant out of mic
scopic models, is among the basic problems of polymer
ence. For entangled polymers in gels or melts, de Genne@1#
predicted scaling laws for the dependence on the poly
length L for viscosity (h}L3) and diffusion constant (D
}L22). These scaling laws are assumed to be valid for
limiting case of polymer length going to infinity. In exper
ments, the apparent scaling lawsD}L22.4 and h}L3.4 are
found@2–4#. However, the experimental findings do not co
tradict the predictions of reptation, as a crossover due
decreasing finite size effects with increasing chain len
cannot be ruled out@3#. Presumably, contour length fluctua
tions ~CLF! are one of the causes for the deviating scal
exponent for finite chain length@5–7#. In the framework of
the repton model introduced by Rubinstein@8,9# and Duke
@10,11# ~further on to be called RD model!, which incorpo-
rates CLF, it is possible to calculate viscosity, diffusion c
efficient, and other quantities of interest. A good agreem
with both theoretical and experimental results is fou
@6,7,12,13#. Using the RD model with periodic boundar
conditions, Kooiman and van Leeuwen@14# analytically cal-
culated the proportionality constantc for the diffusion con-
stant in the limit for infinite chain length: lim

L→`
DL25c.

They foundc5w/(2d11), d being the dimensionality o
the entanglement network andw a model constant defining
the time scale. Building upon this result, Pra¨hofer and Spohn
@15# rigorously derived the leading order term in 1/L for the
diffusion constant in the RD model and furthermore p
posed a scaling for the finite size effects:DL22W/(2d
11)}L2b, where 1/2<b<1. All results mentioned above
were obtained under the assumption that the entanglem
network which is topologically restricting the polymer
regular and static. Real entanglement networks such as
or melts are disordered. The effects of a disordered envi
ment can be manifold:~1! Spatial variations of the mobility
of the ‘‘defects’’ of stored length;~2! locally fluctuating po-
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tential energy due to interactions between chain and envi
ment;~3! entropically favorable regions of low entangleme
density; ~4! relaxation of the environment~constraint re-
lease!.

Numerical investigations@16# showed that entropically fa
vorable regions can for short chains substantially lower
diffusion constant by the creation of ‘‘entropic traps.’’ So fa
conclusive investigations of diffusing polymers, long enou
to span several such traps, are missing. Constraint relea
considered to be of minor importance in gels but needs to
self-consistently taken into account in melts@17#. Schäfer,
Baumgärtner, and Ebert@18# numerically investigated the ef
fect of kinematic disorder, i.e., disorder which affects t
mobility of the chain segments while leaving the equilibriu
distribution of chain configurations unaltered. Their inves
gation shows that the reptation prevails in presence of k
matic disorder. However, due to being based on Monte C
~MC! simulations and thus relatively short chains, no qua
titative result could be obtained about the modifications
disorder would cause to the reptation prediction for the d
fusion constant in the long chain limit. As reptation is show
to prevail, the scaling lim

L→`
DL25c must remain valid.

The aim of this paper is to calculate the coefficientc for a
polymer diffusing in a disordered environment exhibiting k
nematic disorder. This means that we are interested in
behavior of the chain in the long chain length limit original
envisaged by the standard reptation theory. Some of the
sults presented here in detail were briefly reported in an
lier paper@19#.

The paper is divided into six sections: In Sec. I, the de
nition of the model is given and the master equation for
chain dynamics is presented in terms of the quantum Ha
tonian formalism@20#. This master equation yields the st
tionary distribution of chain conformations as shown in S
II. The model with periodic boundary conditions is analyz
in Sec. III. Adapting the strategy in Ref.@14# for obtaining
the diffusion constant for the periodic system yields a low
bound on the diffusion constant for the original system. S
tion IV is devoted to deriving an upper bound to the diffusi
constant by generalizing a variational approach used in R
@15# for the ordered system. In Sec. V, Monte Carlo simu
©2003 The American Physical Society06-1
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WILLMANN, SCHÜTZ, AND JAIN PHYSICAL REVIEW E 67, 061806 ~2003!
tions of the polymer diffusion in kinematically disordere
environments are presented. The last section addresse
dynamics of internal chain segments.

I. A LATTICE MODEL FOR REPTATION WITH
KINEMATIC DISORDER

The RD model is a discretized model for reptation, i.e.
describes the dynamics of a polymer in an entanglement
work. This network is assumed to be regular and static
three dimensions, it has the shape of a cubic lattice, wh
the polymer is forbidden to cut through the edges of
cubes. The faces of the cubes can by penetrated by the c
~see Fig. 1!. The polymer itself is assumed to consist ofL
11 ‘‘reptons,’’ i.e., segments of about the entanglem
length, which equals the lattice constant of the cubic latt

The model defines dynamical rules for the reptons’ m
tion. The dynamics on a smaller scale, i.e., high freque
Rouse modes, is averaged out. In this sense, the RD mod
an effective model. The dynamical rules for the reptons
the following.

~a! Each cell occupied by the chain must contain at le
one repton to ensure the connectivity of the chain, since
length represented by a repton equals the lattice consta
the cells. The sequence of occupied pores corresponds t
tube as in the standard reptation theory.

~b! End reptons can move to adjacent cells provided r
~a! is not violated.

~c! Interior reptons can move to cells occupied by t
neighboring reptons if allowed by rule~a!. This ensures the
dynamics to be reptation, as any movement in the inte
requires multiple reptons to occupy the same cell, wh
means that there is some excess ‘‘stored length’’ availa
This corresponds to the motion of defects in the original
Gennes reptation model.

All moves are assumed to be thermally activated. In
model, the cubic lattice representing the entanglement
work gets kinematically disordered by assigning an in
vidual energy barrier to every boundary between adjac
cells. These barriers have to be overcome by a crossing

FIG. 1. Two-dimensional representation of a kinematically d
ordered lattice with a reptating polymer chain and the lattice
mapping. Arrows indicate possible moves of the reptons.B
5exp(E/2).
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ton. Note that we do not assign different energies to
reptons when residing in the cells. This choice of quench
disorder guarantees that only the mobility of the reptons,
not the equilibrium configurations, is affected, as will b
seen below. Let there besPN different possible hopping
ratesWa , which are distributed randomly and occur with
probability f (Wa) throughout the lattice. We demand that th
disorder averageŝ1/W&5(a51

s f (Wa)/Wa and ^1/W2& ~the
mean hopping time and its second moment! are finite.

The RD model is used to describe the dynamics of
entangled polymer chain under the influence of an exte
electric field. A common example is DNA under electr
phoresis conditions where the reptons carry a charge e
and develop a drift velocity along the direction of an appli
electric field. Let the field be oriented along the (111) dia
onal of the cubes. We denote the~dimensionless! energy gain
of a repton when moving from one cell to another along
direction of the field asE. By local detailed balance, move
across a cell boundary with assigned hopping rateWa along
the field happen with rateWaexp(E/2), those in the opposite
direction with rateWaexp(2E/2) @10#. By projecting the
reptons’ positions on the direction of the field, their relati
coordinates can be denoted as a one-dimensional lattice
with L sites by the following prescription.

~1! If the projected link between adjacent reptonsi and i
11 is oriented along~against! the field direction across a ce
boundary with assigned rateWa , site i of the lattice gas is
assigned the valueyi5a (yi52a). We interpret values6a
as particles.

~2! If adjacent reptonsi and i 11 occupy the same cell
i.e., their projected positions coincide, the link is represen
in the lattice gas asyi50 at sitei. We interpret a site, which
is assigned a 0 asbeing unoccupied.

Thus, theL11 coordinates of the reptons in the directio
of the field are translated into the equivalent set of the re
tive coordinates manifest as the assignment ofa,2a, or 0 to
the L sites of the lattice gas plus the center of mass coo
nate’s component in field direction. The dynamics of the re
tons translates into the lattice gas picture as follows. In
bulk, particles of sort6a hop to the left with rate
Waexp(6E/2) and to the right with rateWa exp(7E/2),
where each site can be occupied by at most one particle.
end dynamics in the lattice gas picture needs some c
Assumingy1 (yL) to be nonzero, the only possible move
the retraction of the end repton to the cell occupied by
neighbor@rule ~a!#. This retraction, being a particle annihila
tion event in the lattice gas picture, happens with the sa
rate as the respective move in the bulk. Assumingy1 (yL) to
be zero, the end repton can, according to rule~b!, move to
any of the 2d adjacent cells. For half of these, the mo
leads to links being along the field direction, the other h
against it. The probability of the chosen move leading to
crossing of a cell boundary with rateWa being assigned to
it is f (Wa). Thus, the move of the repton, bein
a particle creation event in the lattice gas pictu
leads to y1 (yL) changing from 0 to 6a with rate
exp(7E/2) f (Wa)Wad@exp(6E/2) f (Wa)Wad#. This choice
of boundary dynamics is, on an average, correct, but negl
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DIFFUSION IN A GENERALIZED RUBINSTEIN-DUKE . . . PHYSICAL REVIEW E 67, 061806 ~2003!
the actual local structure of the network. In order to ver
that the model is correct on long time scales~as relevant for
the center-of-mass diffusion!, we performed Monte Carlo
simulations comparing the diffusion constant of our p
jected model withd52 at different disorder distribution
with a polymer chain moving according to the dynamics
the repton model in a two-dimensional lattice with rando
but fixed hopping rates assigned to each cell boundary
turns out that although the results differ for small chainsL
,10) they coincide within the statistical errors for long
chains. This legitimates our choice of boundary dynamics
investigating the behavior of long chains. Figure 2 shows
example where a binary disorder distribution withW1
51/2, W251/4, and^W&53/8 was chosen.

Every move of a particle in the lattice gas leads to
change in the component of the center of mass coordina
the repton chain along the field direction.

~1! Particle of typea moving to the right~left! decreases
~increases! x by 1/(L11), as this is equivalent to a repto
moving downward~upward!. As there areL11 reptons,
each contributes 1/(L11) to the center of mass position.

~2! Particle of type2a moving to the right~left! in-
creases~decreases! x by 1/(L11).

In the subsequent sections, we will calculate the drift
locity v of the center of mass coordinate in presence of
applied electric field, and by employing the Einstein relati
the zero-field diffusion constant. When calculatingv, we re-
strict ourselves to the linear response regime, ignor
higher-order field dependences. In order to calculatev, only
the change in the center of mass coordinate along the fiex
has to be known, but not the absolute value itself. Wher
the latter cannot be known from the lattice gas, the forme
given by the difference of the currents of positive partic
j 1 and that of the negative onesj 2: v5 j 22 j 1. As the
choice of the field direction is arbitrary, by use of the Ei
stein relation the model allows for computing the zero-fie
diffusion constant along a distinct direction ind-dimensional
space. As zero-field diffusion is isotropic, this immediate
yields thed-dimensional diffusion constant. This is due
distinguishing between particles of typesa and2a in con-

FIG. 2. Comparison between the diffusion coefficients for sim
lations of the disordered RD and two dimensional lattice mode
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trast to the original projected repton model used by Rub
stein, which allows only for the computation of the curvilin
ear diffusion constant along the contour of the chain. In
Rubinstein model, additional assumptions are necessar
relate the curvilinear to thed-dimensional diffusion constant
Our model as well as the RD model allows for computati
of the latter quantity within the model.

II. QUANTUM HAMILTONIAN AND STATIONARY STATE

The model introduced in the preceding section describe
Markov process and thus the dynamics can be written
form of a master equation. For convenience, we will use
quantum Hamiltonian formalism@20# to write down the mas-
ter equation at zero electric field and solve for the station
state.

At each site of the lattice gas with lengthL, 2s11 values
for yi are possible. Therefore, the state spaceX has the di-
mension (2s11)L. EveryhPX is assigned a vectoruh& and
a transposed vector^hu. These vectors constitute a basis f
the space of system configurationsX. A probability distribu-
tion P(h)[Ph can thus be written as a probability vector

uP&5 (
hPX

P~h!uh&. ~1!

Let a summation vector ^su be defined as
^su5(hPX^hu. Normalization of the probability vector is
given if ^suP&51. The generator for the dynamics of th
system is the matrixH. The off-diagonal elements of th
matrix contain the~negative! transition ratest(h,h8) from a
stateh8 to h:

^huHuh8&5Hh,h852t~h,h8!. ~2!

The diagonal elementsHh,h contain the sum of all the
outgoing rates:

^huHuh&5Hh,h5 (
h8Þh

t~h8,h!. ~3!

It is easily checked that conservation of probability, i.
^suH50 in the language of the quantum Hamiltonian fo
malism, is fulfilled byH. The master equation

d

dt
Ph~ t !5 (

hÞh8,hPX
@ t~h,h8!Ph8~ t !2t~h8,h!Ph~ t !#

~4!

describing the Markovian dynamics of the system can
written as

d

dt
uP~ t !&52HuP~ t !&. ~5!

The stationary stateuP* & is thus characterized by th
equation

HuP* &50. ~6!

-
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WILLMANN, SCHÜTZ, AND JAIN PHYSICAL REVIEW E 67, 061806 ~2003!
In this formalism, the expectation valuê F(t)&
5(hF(h)P(h,t) of an operatorF is written as follows@20#.
The operatorF:X→X is represented by a diagonal matr
F5(hF(h)uh&^hu. Then,

^F~ t !&5^suFe2HtuP~0!&5^sueHtFe2HtuP~0!&. ~7!

Let the time-dependent operatorF(t) for t.0 be defined
as

F~ t !5eHtFe2Ht. ~8!

^F(t)& is an expectation value that it is not only averag
over possible realizations of the process but also over
initial states according toP(0). In the following, it is as-
sumed thatuP(0)&5uP* &, so that

^F~ t !&5^suF~ t !uP* &. ~9!

For our model, we choose a tensor product basis as
lows. Let at each site of the lattice gas the unit vectore1
denote yi50, e2a , denote yi5a and e2a11 denote
yi52a. A state vector for a stateh5(1,23, . . . ,5,22),
for an example, then can be written asuh&5e2^ e7^ •••

^ e10^ e5). Using this basis, the following operator create
particle of typea at sitei, provided it was previously unoc
cupied:

~10!

whereE(2a,1) is the matrix with a single entry 1 at row 2a
and column 1. Similarly, the operatoraa,21

† ( i )
5E(2a11,1)( i ) creates a particle of type2a, if possible. The
corresponding annihilation operators at sitei are aa,1( i )
5E(1,2a)( i ) andaa,21( i )5E(1,2a11)( i ). To formulate the di-
agonal part of the quantum Hamiltonian, the matricesu( i )
5E(1,1)( i ), va,1( i )5E(2a,2a)( i ) and va,21( i )
5E(2a11,2a11)( i ) are employed. Thus, the quantum Ham
tonian for the model defined in the preceding section at z
field reads

Hopen5 (
i 51

L21

(
s561

(
a51

s

Wa@2aa,s
† ~ i 11!aa,s~ i !

2aa,s
† ~ i !aa,s~ i 11!1u~ i 11!va,s~ i !

1u~ i !va,s~ i 11!#1 (
s561

(
a51

s

$Wad f~Wa!

3@2aa,s
† ~1!1u~1!#1Wa@2aa,s~1!1va,s~1!#%

1 (
s561

(
a51

s

$Wad f~Wa!@2aa,s
† ~L !1u~L !#

1Wa~2aa,s~L !1va,s~L !!%. ~11!

Plugging a product measure ansatz
06180
e
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uPopen* ~0!&5S 1

p1,1~1!

p1,21~1!

p2,1~1!

A

D ^ ••• ^S 1

p1,1~L !

p1,21~L !

p2,1~L !

A

D
3

1

)
i 51

L H 11 (
a51

s

@pa,1~ i !1pa,21~ i !#J
~12!

into HopenuPopen* (0)&50 leads to a very simple set of equ
tions for the probabilitiespa,61 and one finds

uPopen* ~0!&5S 1

d f~W1!

d f~W1!

A

d f~Ws!

d f~Ws!

D ^ L

1

~2d11!L
. ~13!

The geometrical equilibrium conformation of the cha
depends on the probability of occurrence for links betwe
reptons along or against the field, irrespective of the assig
hopping rates of possibly crossed cell boundaries. T
means we have to consider the overall probability for p
ticles of positive sign at a site, which is(a51

s f (Wa)d/(2d
11)5d/(2d11), or negative sign, being alsod/(2d11),
respectively. These are equal to the probabilities found
the disorder free RD model@21#, which shows that the cho
sen kind of disorder is indeed kinematic disorder, as it infl
ences only the mobility but not the equilibrium configur
tions of the chain.

Note that it is not possible to compute the stationary st
for the model with a nonzero field at an arbitraryL. There-
fore, the Einstein relation (1/L)(d/dE)(^v(E)&)5D is not a
feasible way of straightforwardly computing the diffusio
constant. Extra input is needed to overcome this problem

III. MODEL WITH PERIODIC BOUNDARY CONDITIONS

In this section, we adapt a calculation due to Kooim
and van Leeuwen@14# for the original RD model with peri-
odic boundary conditions to the case with kinematic disord
The quantum Hamiltonian for the periodic system at ze
field reads

Hper5 (
s561

(
a51

s

(
i 51

L

Wa@2aa,s
† ~ i 11!aa,s~ i !

2aa,s
† ~ i !aa,s~ i 11!1u~ i 11!va,s~ i !

1u~ i !va,s~ i 11!#. ~14!
6-4
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PlugginguPopen* (0)& as for the open system into the equ
tion HperuPopen* (0)&50 for the periodic system shows that
zero electric field, the stationary state of the open system
also stationary with respect to the dynamics of a correspo
ing periodic system. In a periodic system, the phase spac
nonergodic, as neither the order nor the number of occur
particles on such a ring can be changed. Therefore, e
connected subset of the phase space~‘‘channel’’! has its own
stationary state. We can calculate the stationary state for
periodic system in presence of a fieldE by mapping the
system to a disordered zero-range process, as introduce
Benjamini, Ferrari, and Landim@22#. This means that the
Einstein relation can be employed to obtain the diffus
constant in the periodic case. Here, the definition of the d
velocity of the center of mass and the corresponding di
sion constant are induced from the system with open bou
ary conditions:v5 j 22 j 1.

Instead of characterizing the system by the spins on
lattice gasy5(y1 , . . . ,yL), it can equivalently be characte
ized by the setss5(s1 , . . . ,sL) containing the signs of the
nonzeroyi , w5(w1 , . . . ,wL) containing the absolute val
ues of theseyi andn5(n1 , . . . ,nL) whereni amounts to the
number of ‘‘0’’ betweensi andsi 11 on the lattice gas. Thus
every lattice gas configuration on a ring can be transla
into a configuration on a lattice of lengthM in the zero-range
picture. Sitei carriesni zero range particles and is separat
from site i 11 by a bond characterized bysi 11 and wi 11.
The total numberK of zero-range particles must equal th
total numberL2M of 0 in the lattice gas:( i 51

M ni5K5L
2M . The dynamics of the lattice gas picture translates i
the zero range picture as follows. The configurati
( . . . ,nj ,nj 11 , . . . ) changes to (. . . ,nj21,nj 1111, . . . )
with rate hj 11

21 wj 11 and to ( . . . ,nj11,nj 1121, . . . ) with
ratehj 11wj 11, wherehj5exp(2Esj/2). This means that the
random hopping rates, as well as thesj , are not assigned to
individual particles, but to bonds between sites in the ze
range~zr! picture. AtE50, zr particles move as in a rando
barrier energy landscape. Moves of the zr particles ca
changes of the center of mass coordinate as defined abo
zr-particle hopping to the right across a bond withsj.0
(sj,0) increases~decreases! the center of mass position b
1/L. Conversely, a zr-particle hopping to the left across
bond withsj.0 (sj,0) decreases~increases! the center of
mass position by 1/L. As with the field free case of the ope
system, we use a quantum Hamiltonian and a tensor basi
the state space to compute the stationary state of the zr la
of lengthM with a givens andw. Let e1( i ) denote an un-
occupied sitei and em( i ) wherem.1 a sitei occupied by
ni5m21 particles. Here, vectors are infinite dimension
The matrix for the creation of a particle at site i is then giv
by

bi
†5S 0 0 . . . 0 . . .

1 0 . . . 0 . . .

A � � A . . .

0 1 0 . . .

A . . . . . . � �

D
i

. ~15!
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The matrix for the annihilation of a particle at site i
accordingly given by

bi5S 0 1 . . . 0 . . .

0 0 1 . . . . . .

A � � � . . .

0 0 0 �

A . . . . . . . . . �

D
i

. ~16!

For constructing the diagonal part of the Hamiltonian, w
need the following type of matrix~note that̂ subi

†5^su1 and
^subi5^sumi):

mi5S 0 0 . . . . . . . . .

0 1 � . . .

A � � 0 . . .

A 0 1 �

A . . . . . . � �

D
i

. ~17!

A hopping event from sitei to site i 11 is described by
the combined action of the matricesbi andbi 11

† This yields
the following expression for the quantum Hamiltonian:

Hzr5(
i 51

M

~2hi 11bi 11bi
†wi 112hi 11

21 bibi 11
† wi 11

1hi 11
21 wi 11mi1hi 11wi 11mi 11!. ~18!

A yet unnormalized product ansatz

uPzr* &5S 1

z1

z1
2

A
D ^ •••^ S 1

zM

zM
2

A
D ~19!

yields

HzruPzr* &5(
i 51

M S 2hi 11wi 11

zi 11

zi
mi uPzr* &

2hi 11
21 wi 11

zi

zi 11
mi 11uPzr* &1hi 11

21 wi 11mi uPzr* &

1hi 11wi 11mi 11uPzr* & D
5(

i 51

M S 2hi 11wi 11

zi 11

zi
mi uPzr* &

2hi
21wi

zi 21

zi
mi uPzr* &1hi 11

21 wi 11mi uPzr* &

1hiwimi uPzr* & D . ~20!
6-5
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uPzr* & is stationary provided

hi 11wi 11zi 111hi
21wizi 215hi 11

21 wi 11zi1hiwizi .
~21!

Applying a general solution@23# to the case at hand an
including normalization, the stationary state for a chan
characterized bys andw and with a total number of particle
K yields

uPzr* ~s,w,K,M !&5 ( 8
(n1 , . . . ,nM)

)
i 51

M

zi
niun1 , . . . ,nM&

3
1

( 8
(n1 , . . . ,nM)

)
i 51

M

zi
ni

, ~22!

where

zl5(
i 51

M
1

hl 1 i
21wl 1 i

)
j 51

i 21

hl 1 j
2 . ~23!

The primed sums are meant to be summations under
constraint( i 51

s ni5K. Knowing the stationary state for eac
channel, the drift velocity for the individual channels can
computed. In the lattice gas picture, every time a particlesi
521 (si51) is hopping to the right~left!, it changes the
position of the center of mass by 1/(L11). The opposite
process, i.e., a particlesi521 (si51) hopping to the left
~right! changes the center of mass position by21/(L11).
Therefore, as mentioned above,v5 j 22 j 1, i.e., the differ-
ence between the currents of negative and positive partic
This operatorv translates to the zr picture as follows:

j 22 j 1→ 1

L (
i 51

M

si 11wi 11~hi 11
21 bibi 11

† 2hi 11bi 11bi
†!.

~24!

Thus, the drift velocity of a given channel is given by

^v~s,w,K,M !&5^su
1

L (
i 51

M

~si 11hi 11
21 wi 11bibi 11

†

2si 11hi 11wi 11bi 11bi
†!Q~K !uPzr* &

1

cK
.

~25!

Here,Q(K) projects on those states ofuPzr* & which have a
constant number of particlesK andcK is the normalization.
So, Q(K)/cKuPzr* &5uPzr* (s,w,K)&. Using this form allows
us to make use of the fact that due to the combined effec
bibj

† , which is to redistribute the particles without changi
their number, we can commutebibj

† andQ(K). This allows
us then to apply the matrices to the product measure, w
its effect is easy to see,
06180
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^v~s,w,K,M !&5^su
1

L (
i 51

M

~si 11hi 11
21 wi 11bibi 11

†

2si 11hi 11wi 11bi 11bi
†!Q~K !uPzr* &

1

cK

5^su
1

L (
i 51

M

@si 11hi 11
21 wi 11Q~K !bibi 11

†

2si 11hi 11wi 11Q~K !bi 11bi
†#uPzr* &

1

cK

5
1

L (
i

Fsi 11hi 11
21 wi 11

zi

zi 11

3^sumi 11uQ~K !Pzr* &2si 11hi 11wi 11

3
zi 11

zi
^sumi uQ~K !Pzr* &G 1

cK
. ~26!

Now, we have to calculate the expressioncK for the prod-
uct state:

cK5 ( 8
(n1 , . . . ,nM)

)
i 51

M

zi
ni , ~27!

where the primed sum again means summing with the c
straint( i 51

M ni5K.
A similar type of summation is found when regarding t

sums of the type

^sumb

Q~K !

cK
uPzr* &5 ( 9

(n1 , . . . ,nM)

1

cK
)
j 51

M

zj
nj , ~28!

where the double primed sum has the constraints( j 51
M nj

5K andnbÞ0. A straightforward calculation of the sums
impossible due to the constraints. To simplify the task,
can profitably use the following identity@14#:

( 8
(n1 , . . . ,nM)

)
i 51

M

zi
ni5

1

2p i R da

aK11 (
(n1 , . . . ,nM)

)
j 51

M

~azj !
nj .

~29!

Thus, we can transform the sums into integrals:

cK5
1

2p i R da

aK11 (
(n1 , . . . ,nM)

)
j 51

M

~azj !
nj

5
1

2p i R da

aK11)j 51

M
1

12azj

5QK,M , ~30!
6-6
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^sumb

Q~K !

cK
uPzr* &

5
1

cK

1

2p i R da

aK11 (
(n1 , . . . ,nM),nbÞ0

)
j 51

M

~azj !
nj

5
1

cK
zb

1

2p i R da

aK)j 51

M
1

12azj

5zb

QK21,M

QK,M
. ~31!

The integralsQK,M satisfy the recursion relation,

QK,M5QK,M211zMQK21,M . ~32!

An explicit solution of this relation yields

QK,M5(
i 51

M

zi
K1M21)

l 51

M8

~zi2zl !
21. ~33!

The primed product indicatesiÞ l . From this point onwards
we are not going to carry through the complete calculat
for ^v(s,w,K,M )&. We will expand it into a series inE and
keep only first-order terms, which is sufficient for employin
the Einstein relation. We start from the expression
^v(s,w,K,M )& after having inserted the result fo
^sumiQ(N2L)/cKuPzr* &:

^v~s,w,K !&5
1

L (
i 51

M

si 11hi 11
21 wi 11

zi

zi 11
zi 11

QK21,M

QK,M

2si 11hi 11wi 11

zi 11

zi
zi

QK21,M

QK,M

5
1

L (
i 51

M

si 11~hi 11
21 wi 11zi

2hi 11wi 11zi 11!
QK21,M

QK,M

5
1

L (
i 51

M

si 11@12exp~2ES!#
QK21,M

QK,M

5
S

L
@12exp~2ES!#

QK21,M

QK,M
, ~34!

whereS5( i 51
M si . For the second equality, we used the e

plicit form of thezi . The term in brackets is easily expand
into a series inE: 12exp(ES)5ES1O(E2). We keep only the
first-order term inE. This means that when we are expandi
the expressionQK21,M /QK,M we need only to keep zero
order terms inE, as all other contributions will vanish whe
using the Einstein relation. The only terms containingE in
the QK,M are thezi , for which we find to first order inE:
06180
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zi5(
j 51

M
1

hi 1 j
21 wi 1 j

)
k51

j 21

hi 1k
2

5(
j 51

M
1

wi 1 j
S 12

E

2
sj 1 i1••• D )

k51

j 21

~12Esi 1k1••• !

5(
j 51

M
1

wi 1 j
1O~E!5z1O~E!. ~35!

Here,z is defined as the zero field value ofzi . The fact
that all zi are equal at zero field is decisive for the explic
integration ofQK,M . We obtain

QK,M5
1

2p i R da

aK11)j 51

M
1

12azj
5S M1K21

M21 D zK.

~36!

It is now clear how to proceed with evaluatin
^v(s,w,K,M )&, as

QK21,M

QK,M
5

S K1M22

M21 D zM21

S K1M21

M21 D zK

5
K

K1M21

1

z
. ~37!

This yields for^v(s,w,K,M )&:

^v~s,w,K,M !&5
1

L (
i 51

M

si 11ES
K

K1M21

1

z
1O~E2!

5
1

L
ES2

K

K1M21

1

z
1O~E2!. ~38!

This is our final expression for̂v(s,w,K,M )&. Knowing
the drift velocity for each channel characterized bys,w, we
have to give each of these a weightC(s,w,K,M ) when av-
eraging over the channels. Following an argument by P¨-
hofer @21#, we show below that provided a configuration
the zr picture is weighted such that atE50, its probability as
contained inPring* (s,w,K,M )5C(s,w,K,M )Pzr* (s,w,K,M )
is equal to the probability of the corresponding state in
lattice gas of the open system as given byPopen* (0), for the
diffusion constants the following relation holds:DL11

open

>DL
per .

When relating zr to lattice gas probabilities, it has to
kept in mind that the periodic zr system hasM sites, while
the corresponding periodic lattice gas hasL>M sites. This
means that a state of the zr system with probabilityqzr can
be permutatedM times, where due to translational invarian
all resulting states have the same probability. A lattice g
configuration with probabilityqlg can be cycled throughL
permutations leading to equal probabilities. Therefore, eq
probabilities of respective configurations meansMqzr
5Lqlg . The weight factor thus has to be chosen as follow
6-7
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C~s,w,K,M !5
dM

~2d11!L S L

M D )
j 51

M

f ~wj !. ~39!

Thus, we find for the drift velocity, when averaged ov
the channels,

v̄5(
M

(
s5(s1 , . . . ,sM)

(
w5(w1 , . . . ,wM)

C~s,w!^v~s,w,K,M !&

5(
M

1

L
EM

dM

~2d11!L S L

M D L2M

L21 S (
w

)
j 51

M

f ~wj !
1

zD .

~40!

This can be rewritten as

v̄5E (
M51

L

V~M !M K 1

zL . ~41!

Here,V(M ) contains all the factors depending onM oc-
curring in the previous expression and^1/z& is a disorder
average.V(M ) is a function that is sharply peaked atM
5L/2 implying that in the limit for largeL, only terms with
largeM significantly contribute to the result. In the limitin
case ofL→` invoking the central limit theorem~remember
that we demanded̂1/W& and ^1/W2& to be finite! yields

K 1

zL 5
1

M ^1/W&
. ~42!

Therefore,

v̄5 (
M51

L
1

L
EM

dM

~2d11!L S L

M D L2M

L21

1

M

1

K 1

WL . ~43!

Using the Einstein relation yields in the limit for largeL

D~0!5
1

L~L21!

1

~2d11! S 12
1

~2d11!L21D 1

K 1

WL
5D*

1

K 1

WL , ~44!

where D* is the diffusion constant for the ordered ca
@14,15#.

Thus, we have shown that lim
L→`

DL251/

@(2d11)^1/W&# for the periodic case, which is a lowe
bound to the open case. Note that the factor 1/^1/W& is the
same as occurring in the single particle diffusion constant
the random barrier model. In this model, random energy b
riers are assigned to bonds between sites just as in th
picture of our problem.
06180
r
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IV. MODEL WITH OPEN BOUNDARY CONDITIONS

A. Variational formula

In order to find an upper bound on the diffusion consta
we follow the strategy of Ref.@15#. The quantum Hamil-
tonian Hopen for our model in its representation using th
tensor basis can be decomposed into the sum of a diag
part D and a nondiagonal oneM. Each of these can them
selves be split into a part describing those moves leadin
an increase of the center of mass coordinate (M 1 andD1)
and a respective part connected to a decrease (M 2 andD2).
Thus,H5D11D22M 12M 2.

The following statement@24# holds for the diffusion con-
stantD:

D5 infgPVF 1

2~L11!2
^D11D2&

2
2

~L11!
^su@D12D2#guP* &1^sugHguP* &G

5 infgPVF@g#. ~45!

Here,V is the space of diagonal matrices with dimensi
(2s11)L. Thus, plugging in any diagonal matrixg into the
functionalF@g# yields an upper bound onD. The challenge
is to chooseg such that the upper bound gets as small
possible. Due to the dimensionality of the diagonal matric
increasing exponentially withL, an exact minimization is no
feasible. Still, some information can be gained by observ
that the functional is convex and thus the minimizingg0
PV is the only matrix for whichdF@g# vanishes. Choosing
g0 such that

^sug0H5^su@D12D2#, ~46!

the variation vanishes. Unfortunately, this formula cannot
solved forg0. We will show below how still some insigh
can be gained from this equation. Introducing the matrixd,
whered(y8uy)5^y8uduy& gives the change in the CMS co
ordinate when a transition from statey to y8 is made, and the
matrix w, wherew(y8uy) denotes the corresponding rate, t
variational formula may be written as:

D5 inf
1

2 (
y8,yPX

w~y8uy!P* ~y!@d~y8uy!1g~y8!2g~y!#2,

~47!

where g(y)5^suguy&. Following Ref. @21#, we now prove
thatDL

open>DL11
per . To simplify the notation, we remark tha

in our model with periodic boundary conditions as in t
original RD model, transitions from a given statey are only
allowed to a statey85yi ,i 11, where the spinsyi andyi 11 are
interchanged. Thus, the last formula applied to the perio
case reads as
6-8



s

t
pt
g

te

ui

s
s

th

a

rv

e

in
h

e

ally

-

DIFFUSION IN A GENERALIZED RUBINSTEIN-DUKE . . . PHYSICAL REVIEW E 67, 061806 ~2003!
DL11
per 5 inf

1

2 (
l 50

L S (
yPX

w~yl ,l 11uy!P* ~y!

3@d~yl ,l 11uy!1g~yl ,l 11!2g~y!#2D . ~48!

Here, each transition between states in a lattice ga
length L11 changes the cm coordinate by61/(L11), as
there are as many reptons as bonds between them. In con
to this, in the open boundary case, there is one more re
as there are bonds leading to the cm coordinate changin
61/(L11) in any transition of a lattice gas of lengthL.
Here, transitions between states can not only occur by in
changing spinsy1 andyi 11 in the bulk but also by creation
and annihilation events at the ends. These events can eq
lently be viewed as interchanges of the spinsy1 and yL ,
respectively, with ‘‘imaginary’’ spinsy0 and yL11 provided
the rates for these interchanges at the ends are adapted
that these correspond to the creation and annihilation rate
demanded by the model. Taking the distribution at
‘‘imaginary’’ sites as for any other site in the lattice gas~re-
member that we have a homogeneous product measure!, the
introduction of a parameter

cl5H 2d11 if l 50 or l 5L

1 for l 51, . . . ,L21
~49!

leads to a fulfillment of this requirement, and the function
for the diffusion constant of the open chain of lengthL reads
as

DL
open5 inf

1

2 (
l 50

L

cl S (
yPX

w~yl ,l 11uy!P* ~y!@d~yl ,l 11uy!

1g~yl ,l 11!2g~y!#2D , ~50!

where w and d are as for the periodic case. Lettingy
5(y0 , . . . ,yL11) for open and periodic system, and obse
ing that asy0 does not occur in the functional forDL11

per , the
averaging ofy0 over P* yields 1 and thus does not chang
the result:

DL
open@g#2DL11

per @g#

5c0S (
yPX

w~y0,1uy!P* ~y!@d~y0,1uy!1g~y0,1!2g~y!#2D
1cLS (

yPX
w~yL,L11uy!P* ~y!@d~yL,L11uy!

1g~yL,L11!2g~y!#2D 2 (
yPX

w~yL11,1uy!P* ~y!

3@d~y0,1uy!1g~y0,1!2g~y!#2

2 (
yPX

w~yL,L11uy!P* ~y!
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3@d~yL,L11uy!1g~yL,L11!2g~y!#2

52(
yPX

w~yL11,1uy!P* ~y!@d~y0,1uy!1g~y0,1!2g~y!#2

12(
yPX

w~yL,L11uy!P* ~y!@d~yL,L11uy!

1g~yL,L11!2g~y!#2

>0. ~51!

Therefore, the diffusion constant of the periodic cha
with length L11 is a lower bound for the open chain wit
lengthL.

B. Functional for diffusion with kinematic disorder

The space of diagonal matricesV, from which an appro-
priategPV has to be chosen such thatF@g# gets as small as
possible, has dimension (2s11)L. A scalar product onV
can be defined for arbitrarym,nPV as^sumnuP* &. A basis
for V can be built from the matricesŷ1( i ) to ŷ2s( i ) acting
nontrivially only at sitei and the unit matrix. We specify
only the following:

ŷa~ i !5
1

2d11
E(2a,2a)~ i !2

1

2d11
E(2a11,2a11)~ i !

for a51, . . . ,s, ~52!

ŷs11~ i !52
2d

2d11
E(1,1)~ i !1 (

j 52

2s11
1

2d11
E( j , j )~ i !.

~53!

For the remainings21 matrices, we demand that thes
are chosen such that for alla,b51, . . . ,2s, i , j 51, . . . ,L,
andaÞb, we have^ ŷa( i ) ŷb( j )&50 as well aŝ ŷa( i )&50.
It is easily checked that the defined matrices are mutu
orthogonal. A basis for the space of diagonal matricesV is
then given by

H )
j 51

2s11

ŷ j~ I j !UI j,$1, . . . ,L% ; j ;I aùI b5� ; aÞbJ .

~54!

The choice of agPV fulfilling ^su@D12D2#5^sugH
leads todF@g#50. In spite of this relation not being solv
able for g, information can be gained by observing thatV
contains subsetsV i 1 , . . . ,i s

which are invariant toH in the

sense that ifgPV i 1 , . . . ,i s
, then the diagonal matrixg8 ful-

filling ^sugH5^sug8 is in V i 1 , . . . ,i s
too, where

V i 1 , . . . ,i s
5spanH )

j 51

2s11

ŷ j~ I j !uI j,$1, . . . ,%

; j ;I aùI b5� ; aÞb;uI j u5 i j

; j 51, . . . ,sJ . ~55!
6-9
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WILLMANN, SCHÜTZ, AND JAIN PHYSICAL REVIEW E 67, 061806 ~2003!
By calculating^su@D12D2#, we find that the minimiz-
ing g0 is in the subspace% j 51

s V i 1 , . . . ,i s
where, i k

5d i ,k ; k51, . . . ,s. Thus, the most general ansatz forg
based on this information is

g5 (
a51

s

(
i 50

L11

(
I s11 , . . . ,I 2s11

ci ,I s11 , . . . ,I 2s11

a ŷa~ i !

3 ŷs11~ I s11!••• ŷ2s11~ I 2s11!, ~56!

where the coefficientsc are real numbers and the se
I s , . . . ,I 2s11 are mutually disjoint.

C. Ansatz for g

The general ansatz given above forg contains too many
parameters for letting a minimization appear feasible.
stead, we use a generalization of the ansatz used by Pra¨hofer
@21# for the ordered RD model:

g5 (
a51

s H (
i 50

L11

ai
aŷa~ i !1 ( 8

k,k850

L11

ck,k8
a ŷa~k!ŷs11~k8!

1 ( 8
o,p,q50;p,q

L11

eo,p,q
a ŷa~o!ŷs11~p!ŷs11~q!J . ~57!

The primed sums indicate the summation variables to
mutually different. Note that this ansatz reflects a particu
choice of parameters for the general ansatz. Inserting the
function intoF@g# yields the following functional:
on

y

06180
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D@g#5 (
a51

s H 2d

~2d11!2
f ~Wa!Wa(

l 50

L

clF S 1

L11

1~al
a2al 11

a !2
2d

~2d11!
~cl ,l 11

a 2cl 11,l
a ! D 2

1
2d

~2d11!2 ( 9
k8

S c0l ,k8
a

2cl 11,k8
a

2
2d

~2d11!
~el ,(l 11,k8)

a
2el 11,(l ,k8)

a
! D 2

1 (
b51

s
2d

~2d11!
f ~Wb!( 9

k
~ck,l

b 2ck,l 11
b !2

1
4d2

~2d11!4 ( 9
p,q

~el ,p,q
a 2el 11,p,q

a !2

1 (
b51

s
4d2

~2d11!3
f ~Wb!(

o,q
~eo,(l ,q)

b 2eo,(l 11,q)
b !2G J .

~58!

The free parameters are the coefficientsai
a , ck,k8

a , and
eo,p,q

a which are, generalizing results in Ref.@15#, chosen as

ai 11
a 5(

l 50

i S 1

L11
2

2d

~2d11!
~cl ,l 11

a 2cl 11,l
a ! D ,

a0
a50, ~59!

ci , j
a 5H (2d11)C

2d S 12gS i

nD DL112 j

(L11)2
for i , j

2cL112 i ,L112 j
a for i . j ,

~60!
eo,p,q
a 5H ~2d11!2C

4dn
g8S o

nD ~L112p!~L112q!

~L11!2~L2o!
for o,p,q

2eL112o,L112q,L112p
a for p,q,o.

~61!
-

Here,g is a monotonically decreasing smooth function
the real numbers withg(x)51 for x<0 which is decreasing
exponentially fast forx→`. This function has the propert
that

(
i 50

` Fg(r )S i

nD Gs

5O~n!, ~62!

wherer ,s are integers andn5(L11)0.75. Given this choice,
the following upper bound forDL11

open is found:
DL11
open<

1

~2d11!

1

~L11!2
^W&, ~63!

where^W& is the disorder average.
This completes the proof that asymptoticallyD}1/L2 in

the presence of kinematic disorder.

V. MC RESULTS

In the case of the ordered RD model, the results forD in
the periodic case@14# coincide to leading order with the up
6-10
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per bound for the open case@15#. In our model, we manage
to give bounds onD which both scale with 1/L2 in the limit
for long chains. This implies that kinematic disorder does
ruin the scaling relation of the standard reptation theo
Still, the numerical prefactors differ. We believe that it is t
result for the lower bound, which correctly describes the d
fusive behavior for long chains. This lower bound was o
tained by a rigorous calculation, while the upper bound
sults from a variational treatment. Given that our conject
is true and for long chainsD51/@L2(2d11)^1/W&#, then
for any choice of disorder distribution,DL2^1/W& plotted
against the chain length is constant. We performed MC sim
lations with different disorder distributions. The upper a
lower bounds differ significantly for binary distributions. W
compare in Fig. 3 the ordered case withd51 ~limit for
DL2^1/W&51/3) to the casesW151/16, W251, f (W1)
5 f (W2)51/2, ^1/W&517/2 ~upper bound forDL2^1/W& is
1.505, lower one 1/3) andW151/8, W251, f (W1)
5 f (W2)51/2, ^1/W&59/2 ~upper bound forDL2^1/W& is
0.844, lower one 1/3). These results suggest that in the
chain length limit,D51/@L2(2d11)^1/W&#.

VI. DYNAMICS OF INTERNAL SEGMENTS

The surprising result of the previous sections is the ob
vation that the effect of kinematic disorder on the collect
behavior of all connected polymer segments is~to leading
order in system size! the same as on a simple pointlike obje
in the same disorder environment. In order to understand
observation, we now consider the dynamics of the inter
segments in the hydrodynamic limit of the vanishing latt
spacing. For the local concentration of reptons, one obt
from the usual ordered repton model in this limit Rouse d
namics @13# restricted to motion inside the tube@5#. The
boundary dynamics, i.e., the hopping into and out of the t
describe the entropic tensile force acting on the chain e
and keeping the polymer in its stretched equilibrium conf

FIG. 3. D(0)L2^1/W& vs L for the cases as described in the te
The lower bound for all three cases is given by the solid line. T
dotted line is the upper bound for the case with^1/W&517/2 and
the dashed one the upper bound when^1/W&59/2. The case with
^1/W&51 is the ordered case where both bounds coincide.
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mation. For understanding the dependendence of the d
sion coefficient on kinematic disorder, which affects mos
the bulk of the polymer chain, it is sufficient to focus on th
hydrodynamic behavior of the bulk reptons. In order to stu
this limit, it is convenient to first investigate the associat
zero-range process and then translate the result into the
drodynamic limit of the exclusion process.

For the zero-range process described in Sec. III withE
50, the average number of particlesr i(t) at sitei obeys the
exact time evolution equation given by

]r i~ t !

]t
5Wizi 21~ t !1Wi 11zi 11~ t !2~Wi1Wi 11!zi~ t !,

~64!

wherezi(t) is the probability that sitei is occupied at timet.
It is known that in the steady state, the occupancy probab
zi

ss is spatially uniform and can be related to the steady s
particle density as@19#

zi
ss5

r i
ss

11r i
ss

. ~65!

It follows that the steady state density profile is uniform
spite of disorder.

To understand the dynamics in the hydrodynamic limit
vanishing lattice spacing, we expand Eq.~64! to second or-
der in lattice constant and find

]r~x,t !

]t
5

]

]x FW~x!
]z~x,t !

]x G . ~66!

At large enough time, the system is expected to be in lo
equilibrium so that we may assume the usual approxima
for z(x,t)2r(x,t) in the steady state to be valid:z(x,t)
'r(x,t)/@11r(x,t)#, where Eq.~65! was used. We are in
terested in the density fluctuations about the steady s
Dr(x,t)5r(x,t)2rss(x) where rss(x)5r5K/M . Retain-
ing the lowest nonvanishing term in the expansion of
preceding equation in powers ofDr(x,t), we obtain

]Dr~x,t !

]t
5

1

~11r!2

]

]x FW~x!
]Dr~x,t !

]x G . ~67!

The above equation describes a random walker in one
mension, diffusing in a random medium with bon
symmetric hopping ratesW(x). It can be shown that at larg
time and length scales, the random walker can be descr
by a single, effective diffusion constantD51/@(1
1r)2^1/W&#, provided^1/W& is finite @25#. Thus, we obtain
the bulk diffusion constant to be given byD in the zero-
range process.

Regarding the site as particle and mass as hole clus
the above model maps onto symmetric exclusion proc
~SEP! with particlewise disorder. We want to calculate th
bulk diffusion constant in the SEP picture using the abo
results for zero-range process. Since the steady state de
profile is uniform in both the pictures, the average local de
sity ni in the vicinity of the location of particlei in SEP is

e

6-11
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related to that in the zero-range process asni51/(11r i).
Then, the density fluctuation about the steady state in
vicinity of particle i is given by

Dni5
21

~11r!2
Dr i1O„~Dr!2

…. ~68!

We note that the above is true only at large enough times
was pointed out in a similar analysis for the tagged part
correlation function for SEP without disorder@26#.

Using Eqs.~67! and ~68!, we find that

]Dn~x,t !

]t
5

1

~11r!2

]

]x FW~x!
]Dn~x,t !

]x G . ~69!

Further, note that,x is the space index in the zero-rang
process, while it labels the particles in the SEP. The sp
coordinatey in symmetric exclusion process is related tox as

y'Ex

dx8r~x8!1x, ~70!

which gives

]

]x
5~11r!

]

]y
1O~Dn!. ~71!

Thus, the particle density fluctuations in the SEP obey

]Dn~y,t !

]t
5

]

]y FW~y!
]Dn~y,t !

]y G . ~72!

Using the random walker analogy, we obtain the effect
diffusion constantD̄ at large times to be equal to 1/^1/W& in
the symmetric exclusion process.

This calculation shows that the internal segments of
polymer chain perform Rouse-type dynamics also in
ev

06180
e

as
e

ce

e

e
e

presence of kinematic disorder, but with a disord
dependent diffusion coefficient. This explains the occurre
of the same correction to the diffusion coefficient for t
long time behavior of the polymer chain as a whole.

CONCLUSIONS

It is the aim of this paper to disentangle the effects of
various types of disorder, which one may expect to ha
significant impact on the dynamics of systems of entang
flexible polymers. We have focused on kinematic disord
which leaves the equilibrium conformation unchanged co
pared to a hypothetical ordered entanglement netw
~which could, in principle, be manufactured artificially b
placing a single polymer in an ordered array of obstacles
a surface!. For the periodic RD model with kinematic diso
der, we computed the drift velocity in the presence of
external field in the linear response regime. Knowing t
diffusion constant for the model with open boundaries yie
via the Einstein relation the drift velocity in this case. W
have proved~rigorously in terms of the RD model for repta
tion! that the asymptotic length scaling of the diffusion c
efficient of the polymer chain remains as predicted by
standard reptation theory. By studying the hydrodynam
limit, we have shown that the individual polymer segmen
inside the tube perform Rouse dynamics in a disordered
vironment, which corresponds to a system of local rand
barriers. Therefore, the amplitude of the diffusion coefficie
becomes dependent on the disorder in the same way a s
particle in a random barrier system.
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@18# L. Schäfer, A. Baumga¨rtner, and U. Ebert, Eur. Phys. J. B10,
105 ~1999!.

@19# R.D. Willmann, J. Chem. Phys.116, 2688~2002!.
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