3,210 research outputs found
Room temperature stretch forming of scale space shuttle external tank dome gores. Volume 1: Technical
An account of activities and data gathered in the Room Temperature Stretch Forming of One-third Scale External Tank Bulkhead Gores for space shuttle study, and a tooling design and production cost study are reported. The following study phases are described: (1) the stretch forming of three approximately one-third scale external tank dome gores from single sheets of 2219-T37 aluminum alloy; (2) the designing of a full scale production die, including a determination of tooling requirements; and (3) the determination of cost per gore at the required production rates, including manufacturing, packaging, and shipping
Single-shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator
We propose and demonstrate a new read-out technique for a superconducting
qubit by dispersively coupling it to a Josephson parametric oscillator. We
employ a tunable quarter-wavelength superconducting resonator and modulate its
resonant frequency at twice its value with an amplitude surpassing the
threshold for parametric instability. We map the qubit states onto two distinct
states of classical parametric oscillation: one oscillating state, with
photons in the resonator, and one with zero oscillation amplitude.
This high contrast obviates a following quantum-limited amplifier. We
demonstrate proof-of-principle, single-shot readout performance, and present an
error budget indicating that this method can surpass the fidelity threshold
required for quantum computing.Comment: 11 pages, 5 figure
3D integrated superconducting qubits
As the field of superconducting quantum computing advances from the few-qubit
stage to larger-scale processors, qubit addressability and extensibility will
necessitate the use of 3D integration and packaging. While 3D integration is
well-developed for commercial electronics, relatively little work has been
performed to determine its compatibility with high-coherence solid-state
qubits. Of particular concern, qubit coherence times can be suppressed by the
requisite processing steps and close proximity of another chip. In this work,
we use a flip-chip process to bond a chip with superconducting flux qubits to
another chip containing structures for qubit readout and control. We
demonstrate that high qubit coherence (, s) is
maintained in a flip-chip geometry in the presence of galvanic, capacitive, and
inductive coupling between the chips
Absolute rate coefficients for photorecombination and electron-impact ionization of magnesium-like iron ions from measurements at a heavy-ion storage ring
Rate coefficients for photorecombination (PR) and cross sections for
electron-impact ionization (EII) of Fe forming Fe and
Fe, respectively, have been measured by employing the electron-ion
merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR
and EII of Fe ions in a plasma are derived from the experimental
measurements. Simple parametrizations of the experimentally derived plasma rate
coefficients are provided for use in the modeling of photoionized and
collisionally ionized plasmas. In the temperature ranges where Fe is
expected to form in such plasmas the latest theoretical rate coefficients of
Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron.
Astrophys. 466, 771 (2007)] for EII agree with the experimental results to
within the experimental uncertainties. Common features in the PR and EII
resonance structures are identified and discussed.Comment: 12 pages, 6 figures, 3 tables, submitted for publication to Physical
Review
Results of NASA Technical Challenge to Demonstrate Two-Speed Drive for Vertical Lift Vehicle
Currently, manned vertical lift vehicles are flown in a manner such that the rotors operate over a narrow range of rotating speed regardless if the vehicle's flight condition is one of vertical takeoff and landing, hover, or forward cruise. The propulsion systems are optimized for operation at the same, corresponding narrow range of rotor speed. However, certain missions and markets benefit greatly if the rotor speed can be adjusted over a wide range of speed to match demands of different missions and flight regimes. A vehicle that can operate with a wide range of rotor speeds would address key barriers to enable new markets and missions for vertical lift vehicles. Key barriers addressed by the wide-range of rotor speed include noise reduced via lower rpm rotor, increase of maximum forward flight speed, increased payload and range, reduced fuel burn, and lower operating costs. A new paradigm for the propulsion system is needed to enable these key benefits. One viable approach is to make use of a two-speed ratio drive system such that the engine can continue to operate over a narrow speed range, whereby engine performance is optimal, while adjusting the rotor speed as needed using the two-speed drive system. Motivated by such needs and by results of several system studies, a NASA Revolutionary Vertical Lift Technology Challenge was established to develop and demonstrate required technologies and designs for achieving a 50% reduction in rotor rpm via a two-speed drive system that incurs less than 2% power loss and maintains current power-to-weight ratios. The technical challenge work was completed and the technical objectives were achieved. This report describes the motivations, the research approach and the significant outcomes
Energy-sensitive imaging detector applied to the dissociative recombination of D2H+
We report on an energy-sensitive imaging detector for studying the
fragmentation of polyatomic molecules in the dissociative recombination of fast
molecular ions with electrons. The system is based on a large area (10 cm x 10
cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and
128 vertical strips, whose pulse height information is read out individually.
The setup allows to uniquely identify fragment masses and is thus capable of
measuring branching ratios between different fragmentation channels, kinetic
energy releases, as well as breakup geometries, as a function of the relative
ion-electron energy. The properties of the detection system, which has been
installed at the TSR storage ring facility of the Max-Planck Institute for
Nuclear Physics in Heidelberg, is illustrated by an investigation of the
dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A
huge isotope effect is observed when comparing the relative branching ratio
between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is
measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is
found to increase to 3.7 +/- 0.5 at ~5 eV.Comment: 11 pages, 12 figures, submitted to Physical Review
A Weighted Estimate for the Square Function on the Unit Ball in \C^n
We show that the Lusin area integral or the square function on the unit ball
of \C^n, regarded as an operator in weighted space has a linear
bound in terms of the invariant characteristic of the weight. We show a
dimension-free estimate for the ``area-integral'' associated to the weighted
norm of the square function. We prove the equivalence of the classical
and the invariant classes.Comment: 11 pages, to appear in Arkiv for Matemati
Bifurcations in the Space of Exponential Maps
This article investigates the parameter space of the exponential family
. We prove that the boundary (in \C) of every
hyperbolic component is a Jordan arc, as conjectured by Eremenko and Lyubich as
well as Baker and Rippon. In fact, we prove the stronger statement that the
exponential bifurcation locus is connected in \C, which is an analog of
Douady and Hubbard's celebrated theorem that the Mandelbrot set is connected.
We show furthermore that is not accessible through any nonhyperbolic
("queer") stable component.
The main part of the argument consists of demonstrating a general "Squeezing
Lemma", which controls the structure of parameter space near infinity. We also
prove a second conjecture of Eremenko and Lyubich concerning bifurcation trees
of hyperbolic components.Comment: 29 pages, 3 figures. The main change in the new version is the
introduction of Theorem 1.1 on the connectivity of the bifurcation locus,
which follows from the results of the original version but was not explicitly
stated. Also, some small revisions have been made and references update
A tunable coupling scheme for implementing high-fidelity two-qubit gates
The prospect of computational hardware with quantum advantage relies
critically on the quality of quantum gate operations. Imperfect two-qubit gates
is a major bottleneck for achieving scalable quantum information processors.
Here, we propose a generalizable and extensible scheme for a two-qubit coupler
switch that controls the qubit-qubit coupling by modulating the coupler
frequency. Two-qubit gate operations can be implemented by operating the
coupler in the dispersive regime, which is non-invasive to the qubit states. We
investigate the performance of the scheme by simulating a universal two-qubit
gate on a superconducting quantum circuit, and find that errors from known
parasitic effects are strongly suppressed. The scheme is compatible with
existing high-coherence hardware, thereby promising a higher gate fidelity with
current technologies
Inelastic neutron and x-ray scattering as probes of the sign structure of the Fe-pnictide superconducting gap
Neutron spin-flip scattering observations of a resonance in the
superconducting state is often taken as evidence of an unconventional
superconducting state in which the gap changes sign
for momentum transfers which play an important role in the pairing.
Recently questions regarding this identification for the Fe-pnictide
superconductors have been raised and it has been suggested that
. Here we propose that inelastic neutron or x-ray
scattering measurements of the spectral weight of a phonon of momentum can
distinguish between these two pairing scenarios.Comment: 4 pages, 4 figure
- …
